ON THE CRITICAL DECAY FOR THE WAVE EQUATION WITH A CUBIC CONVOLUTION IN 3D

被引:0
|
作者
Tanaka, Tomoyuki [1 ]
Wakasa, Kyouhei [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Natl Inst Technol, Kushiro Coll, Dept Creat Engn, 2-32-1 Otanoshike Nishi, Kushiro Shi, Hokkaido 0840916, Japan
基金
日本学术振兴会;
关键词
Wave equation; cubic convolution; global existence; blow-up; lifespan; critical exponent; TIME BLOW-UP; GLOBAL EXISTENCE THEOREM; LIFE-SPAN; U=/U/P;
D O I
10.3934/dcds.2021048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the wave equation with a cubic convolution partial derivative(2)(t)u = (vertical bar x vertical bar(-gamma) *u(2))u in three space dimensions. Here, 0 < gamma < 3 and * stands for the convolution in the space variables. It is well known that if initial data are smooth, small and compactly supported, then gamma >= 2 assures unique global existence of solutions. On the other hand, it is also well known that solutions blow up in finite time for initial data whose decay rate is not rapid enough even when 2 <= gamma < 3. In this paper, we consider the Cauchy problem for 2 <= gamma < 3 in the space-time weighted L-infinity space in which functions have critical decay rate. When gamma = 2, we give an optimal estimate of the lifespan. This gives an affirmative answer to the Kubo conjecture (see Remark right after Theorem 2.1 in [13]). When 2 < gamma < 3, we also prove unique global existence of solutions for small data.
引用
收藏
页码:4545 / 4566
页数:22
相关论文
共 50 条
  • [31] Plane wave basis in integral equation for 3D scattering
    Perrey-Debain, E
    Trevelyan, J
    Bettess, P
    [J]. MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 292 - 297
  • [32] Approximate Controllability of a 3D Nonlinear Stochastic Wave Equation
    Gao, Peng
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [33] Global Behavior of Solutions to the Focusing 3d Cubic Nonlinear Schrodinger Equation
    Holmer, Justin
    Roudenko, Svetlana
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1244 - +
  • [34] Blow-up criteria for the 3D cubic nonlinear Schrodinger equation
    Holmer, Justin
    Platte, Rodrigo
    Roudenko, Svetlana
    [J]. NONLINEARITY, 2010, 23 (04) : 977 - 1030
  • [35] Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation
    Plewa, Joseph-Marie
    Ducasse, Olivier
    Dessante, Philippe
    Jacobs, Carolyn
    Eichwald, Olivier
    Renon, Nicolas
    Yousfi, Mohammed
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2016, 18 (05) : 538 - 543
  • [36] Constant Velocity 3D Convolution
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Hara, Kosuke
    Yoshida, Yuuichi
    Suzuki, Koichiro
    Sato, Ikuro
    Saito, Hideo
    [J]. 2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 343 - 351
  • [37] Constant Velocity 3D Convolution
    Sekikawa, Yusuke
    Ishikawa, Kohta
    Saito, Hideo
    [J]. IEEE ACCESS, 2018, 6 : 76490 - 76501
  • [38] Weighted energy decay for 1 D wave equation
    Kopylova, E. A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (02) : 494 - 505
  • [39] Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints
    Kunisch, Karl
    Meinlschmidt, Hannes
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 138 : 46 - 87
  • [40] 3D Convolution on a 3D systolic array: Another point of view
    Lakhani, S.
    Wang, Y.
    Milenkovic, A.
    Milutinovic, V.
    [J]. International Journal of Computers and Applications, 1997, 19 (03): : 130 - 134