Wave equation;
cubic convolution;
global existence;
blow-up;
lifespan;
critical exponent;
TIME BLOW-UP;
GLOBAL EXISTENCE THEOREM;
LIFE-SPAN;
U=/U/P;
D O I:
10.3934/dcds.2021048
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the wave equation with a cubic convolution partial derivative(2)(t)u = (vertical bar x vertical bar(-gamma) *u(2))u in three space dimensions. Here, 0 < gamma < 3 and * stands for the convolution in the space variables. It is well known that if initial data are smooth, small and compactly supported, then gamma >= 2 assures unique global existence of solutions. On the other hand, it is also well known that solutions blow up in finite time for initial data whose decay rate is not rapid enough even when 2 <= gamma < 3. In this paper, we consider the Cauchy problem for 2 <= gamma < 3 in the space-time weighted L-infinity space in which functions have critical decay rate. When gamma = 2, we give an optimal estimate of the lifespan. This gives an affirmative answer to the Kubo conjecture (see Remark right after Theorem 2.1 in [13]). When 2 < gamma < 3, we also prove unique global existence of solutions for small data.
机构:
Keio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
RIKEN, Ctr Adv Intelligence Project, Saitama, JapanKeio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
Ikeda, Masahiro
Tanaka, Tomoyuki
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, JapanKeio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
Tanaka, Tomoyuki
Wakasa, Kyouhei
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol, Kushiro Coll, Dept Creat Engn, 2-32-1 Otanoshike Nishi, Kushiro, Hokkaido 0840916, JapanKeio Univ, Fac Sci & Technol, Dept Math, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
机构:
Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
Waseda Univ, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
IMI BAS, Acad Georgi Bonchev Str,Block 8, Sofia 1113, BulgariaUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
Georgiev, Vladimir
Li, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy
Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R ChinaUniv Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56100 Pisa, Italy