ON THE CRITICAL DECAY FOR THE WAVE EQUATION WITH A CUBIC CONVOLUTION IN 3D

被引:0
|
作者
Tanaka, Tomoyuki [1 ]
Wakasa, Kyouhei [2 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Natl Inst Technol, Kushiro Coll, Dept Creat Engn, 2-32-1 Otanoshike Nishi, Kushiro Shi, Hokkaido 0840916, Japan
基金
日本学术振兴会;
关键词
Wave equation; cubic convolution; global existence; blow-up; lifespan; critical exponent; TIME BLOW-UP; GLOBAL EXISTENCE THEOREM; LIFE-SPAN; U=/U/P;
D O I
10.3934/dcds.2021048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the wave equation with a cubic convolution partial derivative(2)(t)u = (vertical bar x vertical bar(-gamma) *u(2))u in three space dimensions. Here, 0 < gamma < 3 and * stands for the convolution in the space variables. It is well known that if initial data are smooth, small and compactly supported, then gamma >= 2 assures unique global existence of solutions. On the other hand, it is also well known that solutions blow up in finite time for initial data whose decay rate is not rapid enough even when 2 <= gamma < 3. In this paper, we consider the Cauchy problem for 2 <= gamma < 3 in the space-time weighted L-infinity space in which functions have critical decay rate. When gamma = 2, we give an optimal estimate of the lifespan. This gives an affirmative answer to the Kubo conjecture (see Remark right after Theorem 2.1 in [13]). When 2 < gamma < 3, we also prove unique global existence of solutions for small data.
引用
收藏
页码:4545 / 4566
页数:22
相关论文
共 50 条
  • [1] The Defocusing Energy-Critical Wave Equation with a Cubic Convolution
    Miao, Changxing
    Zhang, Junyong
    Zheng, Jiqiang
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (04) : 993 - 1015
  • [2] SCATTERING FOR THE RADIAL 3D CUBIC WAVE EQUATION
    Dodson, Benjamin
    Lawrie, Andrew
    [J]. ANALYSIS & PDE, 2015, 8 (02): : 467 - 497
  • [3] Weighted energy decay for 3D wave equation
    Kopylova, E. A.
    [J]. ASYMPTOTIC ANALYSIS, 2009, 65 (1-2) : 1 - 16
  • [4] ON A WAVE-EQUATION WITH A CUBIC CONVOLUTION
    MENZALA, GP
    STRAUSS, WA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 43 (01) : 93 - 105
  • [5] NONDISPERSIVE DECAY FOR THE CUBIC WAVE EQUATION
    Donninger, Roland
    Zenginoglu, Anil
    [J]. ANALYSIS & PDE, 2014, 7 (02): : 461 - 495
  • [6] Critical exponent for the wave equation with a time-dependent scale invariant damping and a cubic convolution
    Ikeda, Masahiro
    Tanaka, Tomoyuki
    Wakasa, Kyouhei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 916 - 946
  • [7] Blowup dynamics for mass critical half-wave equation in 3D
    Georgiev, Vladimir
    Li, Yuan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (07)
  • [8] 3D Medical Image Interpolation Based on Parametric Cubic Convolution
    YANG Jin-fan1
    [J]. Chinese Journal of Biomedical Engineering, 2007, (03) : 131 - 138
  • [9] Decay estimates for the critical semilinear wave equation
    Bahouri, H
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06): : 783 - 789
  • [10] Threshold solutions for the focusing 3D cubic Schrodinger equation
    Duyckaerts, Thomas
    Roudenko, Svetlana
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) : 1 - 56