Super-Durable and Highly Efficient Electrostatic Induced Nanogenerator Circulation Network Initially Charged by a Triboelectric Nanogenerator for Harvesting Environmental Energy

被引:50
|
作者
Rui, Pinshu [1 ,2 ]
Zhang, Wen [1 ]
Wang, Peihong [1 ,3 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Photoelect Convers Energy Mat & Devices Key Lab A, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Mech & Optoelect Phys, Huainan 232001, Peoples R China
[3] Anhui Univ, Minist Educ, Key Lab Struct & Funct Regulat Hybrid Mat, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; electrostatic induction nanogenerator; nonfriction circulation network; arched film structure; remote hydrological monitoring; blue energy; WATER-WAVE ENERGY; PERFORMANCE; DENSITY; ELECTRONICS;
D O I
10.1021/acsnano.0c10840
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triboelectric nanogeneration is a burgeoning and promising technology for harvesting low-frequency mechanical energy from the environment, but the energy conversion efficiency and service life of the triboelectric nanogenerator (TENG) device are limited by the inevitable frictional resistance between the tribo-surfaces. Herein, we propose an electrostatic induction nanogenerator (EING) circulation network (EICN) by integrating an arbitrary number of EING units for harvesting low-frequency mechanical energy. Because of absolute conquering of the friction resistance between the tribo-surfaces, the average power density of the EING device in the EICN by the initial charge injection (from a TENG or a power supply) is more than a 15-fold enhancement compared with the previous swing-structured TENG. The EICN can recover to the stable and optimal electrical output state in 90 s without external charge injection, even if the external triggering interrupts for 40 min and then restarts, demonstrating the excellent application feasibility of this strategy. To display the practical application scenario for harvesting large-scale mechanical energy from the environment, a high-performance and ultralow-friction TENG is designed for the initial charge injection to the EICN. Moreover, portable electronic devices are powered successfully to realize the self-powered sensing and remote marine environmental monitoring when an EICN with three EINGs is triggered by the real water wave. This EICN strategy not only can harvest low-frequency swing type mechanical energy but also has the capacity of harvesting the rotational mechanical energy after reasonable structure modification, providing an excellent candidate for large-scale blue energy harvesting in practical applications.
引用
收藏
页码:6949 / 6960
页数:12
相关论文
共 50 条
  • [1] A Highly Efficient and Durable Kirigami Triboelectric Nanogenerator for Rotational Energy Harvesting
    Kong, Dae Sol
    Han, Jae Yeon
    Ko, Young Joon
    Park, Sang Hyeok
    Lee, Minbaek
    Jung, Jong Hoon
    ENERGIES, 2021, 14 (04)
  • [2] Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting
    Zhao, Chunlin
    Zhang, Qian
    Zhang, Wenliang
    Du, Xinyu
    Zhang, Yang
    Gong, Shaobo
    Ren, Kailiang
    Sun, Qijun
    Wang, Zhong Lin
    NANO ENERGY, 2019, 57 : 440 - 449
  • [3] Super-Durable, Low-Wear, and High-Performance Fur-Brush Triboelectric Nanogenerator for Wind and Water Energy Harvesting for Smart Agriculture
    Chen, Pengfei
    An, Jie
    Shu, Sheng
    Cheng, Renwei
    Nie, Jinhui
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2021, 11 (09)
  • [4] Highly Integrated Triboelectric Nanogenerator for Efficiently Harvesting Raindrop Energy
    Liu, Xia
    Yu, Aifang
    Qin, Aimao
    Zhai, Junyi
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (11)
  • [5] An octave box inspired energy regularization triboelectric nanogenerator for highly efficient wave energy harvesting
    Ren, Yuanchao
    Wang, Zizhuo
    Chen, Jie
    Wu, Fei
    Guo, Hengyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (22) : 8829 - 8837
  • [6] A durable triboelectric nanogenerator with a coaxial counter-rotating design for efficient harvesting of random mechanical energy
    Ma, Guoliang
    Wang, Dakai
    Wang, Jingxiang
    Li, Jianhao
    Wang, Ze
    Li, Bo
    Mu, Zhengzhi
    Niu, Shichao
    Zhang, Junqiu
    Ba, Kaixian
    Yu, Bin
    Liu, Qiang
    Han, Zhiwu
    Ren, Luquan
    NANO ENERGY, 2023, 105
  • [7] Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy
    Jie, Yang
    Jia, Xueting
    Zou, Jingdian
    Chen, Yandong
    Wang, Ning
    Wang, Zhong Lin
    Cao, Xia
    ADVANCED ENERGY MATERIALS, 2018, 8 (12)
  • [8] Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy
    Lin, Hongbin
    He, Minghui
    Jing, Qingshen
    Yang, Weifeng
    Wang, Shutang
    Liu, Ying
    Zhang, Yaoli
    Li, Jing
    Li, Ning
    Ma, Yanwen
    Wang, Lianhui
    Xie, Yannan
    NANO ENERGY, 2019, 56 : 269 - 276
  • [9] Optimization of Triboelectric Nanogenerator Charging Systems for Efficient Energy Harvesting and Storage
    Niu, Simiao
    Liu, Ying
    Zhou, Yu Sheng
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 641 - 647
  • [10] High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator
    Xi, Yi
    Wang, Jie
    Zi, Yunlong
    Li, Xiaogan
    Han, Changbao
    Cao, Xia
    Hu, Chenguo
    Wang, Zhonglin
    NANO ENERGY, 2017, 38 : 101 - 108