Soil organic carbon sequestration and mitigation potential in a rice cropland in Bangladesh - a modelling approach

被引:7
|
作者
Begum, K. [1 ]
Kuhnert, M. [1 ]
Yeluripati, J. [2 ]
Ogle, S. [3 ]
Parton, W. [3 ]
Kader, M. A. [4 ,5 ]
Smith, P. [1 ]
机构
[1] Univ Aberdeen, Inst Biol & Environm Sci, 23 St Machar Dr, Aberdeen AB24 3UU, Scotland
[2] James Hutton Inst, Aberdeen AB15 8QH, Scotland
[3] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA
[4] Bangladesh Agr Univ, Dept Soil Sci, Mymensingh 2202, Bangladesh
[5] Univ South Pacific, Sch Agr & Food Technol, Suva, Fiji
关键词
Carbon sequestration; Rice; Agricultural management; Mitigation potential; Bangladesh; LONG-TERM APPLICATION; GREENHOUSE-GAS MITIGATION; INDO-GANGETIC PLAINS; NITROGEN MINERALIZATION; AGRICULTURAL SOILS; TERRACE SOIL; PADDY SOIL; MANAGEMENT; MATTER; FERTILIZER;
D O I
10.1016/j.fcr.2018.07.001
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
An increase in the storage of carbon (C) in soil by changing management practices can help to mitigate climate change and increase soil quality. The objective of this study was to evaluate the best management options for reducing greenhouse gas (GHG) emissions. An ecosystem model DayCent was tested for two rice (Oryza sativa L.) experimental sites in Bangladesh. The sites are under different management practices and we first tested the models ability to simulate SOC turnover, and then estimated the potential for SOC sequestration by comparing change in SOC for each management scenario with baseline management (current farmers' practices) including conventional tillage, 5% residue incorporation and nitrogen (N) fertilizer. Predicted yield was also compared at both sites to ensure that yield was not compromised by mitigation measures. A control treatment was tested at both sites. At site 1, two other treatments of mineral N fertilizer, and combination of farmyard manure (FYM) and N were tested in a double rice based crop rotation. At site 2, a treatment receiving cowdung (CD) application, and a combination of CD and N were tested in a wheat (Triticum aestivum L.)-rice based crop rotation. The DayCent model was able to simulate SOC increase from the double rice test sites under unfertilized conditions, considering additional N and C sources in the simulations. Assuming N fertilizer (180 kg N ha(-1) yr(-1)) application for site 1, and CD application (25 t ha(-1) yr(-1)) for site 2, respectively, as the baseline, four single, and one integrated, scenarios were implemented in the model to predict SOC and yield at both sites. Two additional scenarios with alternate wet and drying (AWD) as a single treatment, and as part of an integrated approach, were also tested for their mitigation potential at site 1. The highest simulated positive impact on SOC development (60% higher than that of the baseline) was observed at site 1 when FYM was used in place of mineral N fertilizer. As there is a yield penalty associated with the use of only FYM, integrated approaches might show more promise, such as inclusion of 15% residue return, reduced tillage, less mineral N fertilizer, FYM addition, with or without AWD. This approach increases SOC by up to 23% while keeping the yield stable (nearly 3.5 t ha(-1)). The application of CD only as determined for baseline of site 2, gives a yield of about 1.8 t ha(-1) yr(-1). In contrast nearly two times more yield was obtained under the scenario associated with integrated management which also increases SOC by 30% relative to the baseline at the second site. Net GHG emissions, including nitrous oxide and methane emissions were estimated using the Intergovernmental Panel on Climate Change (IPCC) tier 1 methods, and country specific emission factors (where available), suggests that the integrated management scenario can reduce the net GHG emissions from 0.58-0.82 t carbon dioxide (CO2)eq. ha(-1) yr(-1) (equivalent to 0.16-0.24 t Ceq. ha(-1) yr(-1)) at site 2, while a net reduction in GHGs of nearly 1.00 t CO2-eq. ha(-1) yr(-1) (equivalent to 0.27 t Ceq. ha(-1) yr(-1)) at site 1 was only achieved if AWD was also implemented with the integrated management scenario. Future studies could attempt to model non-CO2 GHGs with a dynamic model.
引用
下载
收藏
页码:16 / 27
页数:12
相关论文
共 50 条
  • [11] Global Sequestration Potential of Increased Organic Carbon in Cropland Soils
    Zomer, Robert J.
    Bossio, Deborah A.
    Sommer, Rolf
    Verchot, Louis V.
    SCIENTIFIC REPORTS, 2017, 7
  • [12] Global Sequestration Potential of Increased Organic Carbon in Cropland Soils
    Robert J. Zomer
    Deborah A. Bossio
    Rolf Sommer
    Louis V. Verchot
    Scientific Reports, 7
  • [13] Carbon sequestration potential of organic agriculture in northern Europe - a modelling approach
    Foereid, B
    Hogh-Jensen, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2004, 68 (01) : 13 - 24
  • [14] Carbon sequestration potential of organic agriculture in northern Europe – a modelling approach
    Bente Foereid
    Henning Høgh-Jensen
    Nutrient Cycling in Agroecosystems, 2004, 68 : 13 - 24
  • [15] A national assessment of soil carbon sequestration on cropland: Description of an analytical approach
    Goss, DW
    Sanabria, J
    Kellogg, RL
    Berc, JL
    SOIL CARBON SEQUESTRATION AND THE GREENHOUSE EFFECT, 2001, (57): : 41 - 50
  • [16] Biochar application to soil for climate change mitigation by soil organic carbon sequestration
    Lorenz, Klaus
    Lal, Rattan
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2014, 177 (05) : 651 - 670
  • [17] Global variation in soil carbon sequestration potential through improved cropland management
    Lessmann, Malte
    Ros, Gerard H.
    Young, Madaline D.
    de Vries, Wim
    GLOBAL CHANGE BIOLOGY, 2022, 28 (03) : 1162 - 1177
  • [18] Author Correction: Global Sequestration Potential of Increased Organic Carbon in Cropland Soils
    Robert J. Zomer
    Deborah A. Bossio
    Rolf Sommer
    Louis V. Verchot
    Scientific Reports, 11
  • [19] Total soil organic carbon and carbon sequestration potential in Nigeria
    Akpa, Stephen I. C.
    Odeh, Inakwu O. A.
    Bishop, Thomas F. A.
    Hartemink, Alfred E.
    Amapu, Ishaku Y.
    GEODERMA, 2016, 271 : 202 - 215
  • [20] Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration
    Taghizadeh-Toosi, Arezoo
    Olesen, Jorgen E.
    AGRICULTURAL SYSTEMS, 2016, 145 : 83 - 89