FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer

被引:232
|
作者
Fu, Yao [1 ]
Liu, Zhu [2 ]
Lou, Shaoke [3 ]
Bedford, Jason [1 ]
Mu, Xinmeng Jasmine [1 ,4 ]
Yip, Kevin Y. [3 ]
Khurana, Ekta [1 ,5 ,6 ]
Gerstein, Mark [1 ,5 ,7 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Fudan Univ, Sch Life Sci, Shanghai 200433, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[4] Broad Inst Harvard & MIT, Cambridge, MA 02142 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[6] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[7] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
TERT PROMOTER MUTATIONS; SOMATIC MUTATIONS; DIFFERENTIAL EXPRESSION; PERSONAL GENOMES; ENHANCERS; PHOSPHORYLATION; ANNOTATION; ELEMENTS; NETWORK; GENES;
D O I
10.1186/s13059-014-0480-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of noncoding drivers from thousands of somatic alterations in a typical tumor is a difficult and unsolved problem. We report a computational framework, FunSeq2, to annotate and prioritize these mutations. The framework combines an adjustable data context integrating large-scale genomics and cancer resources with a streamlined variant-prioritization pipeline. The pipeline has a weighted scoring system combining: inter- and intra-species conservation; loss- and gain-of-function events for transcription-factor binding; enhancer-gene linkages and network centrality; and per-element recurrence across samples. We further highlight putative drivers with information specific to a particular sample, such as differential expression. FunSeq2 is available from funseq2.gersteinlab.org.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats
    Kong, Lingpeng
    Cheng, Hong
    Zhu, Kun
    Song, Bo
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [22] Identifying noncoding risk variants using disease-relevant gene regulatory networks
    Gao, Long
    Uzun, Yasin
    Gao, Peng
    He, Bing
    Ma, Xiaoke
    Wang, Jiahui
    Han, Shizhong
    Tan, Kai
    NATURE COMMUNICATIONS, 2018, 9
  • [23] Identifying noncoding risk variants using disease-relevant gene regulatory networks
    Long Gao
    Yasin Uzun
    Peng Gao
    Bing He
    Xiaoke Ma
    Jiahui Wang
    Shizhong Han
    Kai Tan
    Nature Communications, 9
  • [24] Regulatory roles of long noncoding RNAs implicated in cancer hallmarks
    Wang, Jun
    Zhang, Xuan
    Chen, Wen
    Hu, Xiang
    Li, Jing
    Liu, Changning
    INTERNATIONAL JOURNAL OF CANCER, 2020, 146 (04) : 906 - 916
  • [25] Genome-wide analysis of noncoding regulatory mutations in cancer
    Weinhold, Nils
    Jacobsen, Anders
    Schultz, Nikolaus
    Sander, Chris
    Lee, William
    NATURE GENETICS, 2014, 46 (11) : 1160 - 1165
  • [26] Genome-wide analysis of noncoding regulatory mutations in cancer
    Nils Weinhold
    Anders Jacobsen
    Nikolaus Schultz
    Chris Sander
    William Lee
    Nature Genetics, 2014, 46 : 1160 - 1165
  • [27] Genome-wide analysis of noncoding regulatory mutations in cancer
    Aldape, Kenneth
    NEURO-ONCOLOGY, 2015, 17 (03) : 329 - 330
  • [28] Network perturbation by recurrent regulatory variants in cancer
    Jang, Kiwon
    Kim, Kwoneel
    Cho, Ara
    Lee, Insuk
    Choi, Jung Kyoon
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (03)
  • [29] LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations
    Lochovsky, Lucas
    Zhang, Jing
    Fu, Yao
    Khurana, Ekta
    Gerstein, Mark
    NUCLEIC ACIDS RESEARCH, 2015, 43 (17) : 8123 - 8134
  • [30] A classification scheme for human polyomavirus JCV variants based on the nucleotide sequence of the noncoding regulatory region
    Jensen P.N.
    Major E.O.
    Journal of NeuroVirology, 2001, 7 (4) : 280 - 287