FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer

被引:232
|
作者
Fu, Yao [1 ]
Liu, Zhu [2 ]
Lou, Shaoke [3 ]
Bedford, Jason [1 ]
Mu, Xinmeng Jasmine [1 ,4 ]
Yip, Kevin Y. [3 ]
Khurana, Ekta [1 ,5 ,6 ]
Gerstein, Mark [1 ,5 ,7 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Fudan Univ, Sch Life Sci, Shanghai 200433, Peoples R China
[3] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
[4] Broad Inst Harvard & MIT, Cambridge, MA 02142 USA
[5] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[6] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[7] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 10期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
TERT PROMOTER MUTATIONS; SOMATIC MUTATIONS; DIFFERENTIAL EXPRESSION; PERSONAL GENOMES; ENHANCERS; PHOSPHORYLATION; ANNOTATION; ELEMENTS; NETWORK; GENES;
D O I
10.1186/s13059-014-0480-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Identification of noncoding drivers from thousands of somatic alterations in a typical tumor is a difficult and unsolved problem. We report a computational framework, FunSeq2, to annotate and prioritize these mutations. The framework combines an adjustable data context integrating large-scale genomics and cancer resources with a streamlined variant-prioritization pipeline. The pipeline has a weighted scoring system combining: inter- and intra-species conservation; loss- and gain-of-function events for transcription-factor binding; enhancer-gene linkages and network centrality; and per-element recurrence across samples. We further highlight putative drivers with information specific to a particular sample, such as differential expression. FunSeq2 is available from funseq2.gersteinlab.org.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer
    Yao Fu
    Zhu Liu
    Shaoke Lou
    Jason Bedford
    Xinmeng Jasmine Mu
    Kevin Y Yip
    Ekta Khurana
    Mark Gerstein
    Genome Biology, 15
  • [2] A computational framework for prioritizing noncoding regulatory variants in cancer
    Fu, Yao
    Liu, Zhu
    Lou, Shaoke
    Colonna, Vincenza
    Bedford, Jason
    Mu, Xinmeng
    Yip, Kevin Y.
    Kang, Hyun Min
    Lappalainen, Tuuli
    Sboner, Andrea
    Yu, Haiyuan
    Rubin, Mark
    Tyler-Smith, Chris
    Khurana, Ekta
    Gerstein, Mark
    CANCER RESEARCH, 2015, 75
  • [3] Computational approach for discovery of regulatory noncoding variants in cancer
    Liu, Yu
    Edmonson, Michael
    Ma, Xiaotu
    Rusch, Michael
    Li, Yongjin
    Li, Benshang
    Shen, Shuhong
    Look, A. Thomas
    Zhang, Jinghui
    CANCER RESEARCH, 2017, 77
  • [4] WEVar: a novel statistical learning framework for predicting noncoding regulatory variants
    Wang, Ye
    Jiang, Yuchao
    Yao, Bing
    Huang, Kun
    Liu, Yunlong
    Wang, Yue
    Qin, Xiao
    Saykin, Andrew J.
    Chen, Li
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
    Chengqi Wang
    Yibo Dong
    Chang Li
    Jenna Oberstaller
    Min Zhang
    Justin Gibbons
    Camilla Valente Pires
    Mianli Xiao
    Lei Zhu
    Rays H. Y. Jiang
    Kami Kim
    Jun Miao
    Thomas D. Otto
    Liwang Cui
    John H. Adams
    Xiaoming Liu
    Genome Biology, 24
  • [6] MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
    Wang, Chengqi
    Dong, Yibo
    Li, Chang
    Oberstaller, Jenna
    Zhang, Min
    Gibbons, Justin
    Pires, Camilla Valente
    Xiao, Mianli
    Zhu, Lei
    Jiang, Rays H. Y.
    Kim, Kami
    Miao, Jun
    Otto, Thomas D.
    Cui, Liwang
    Adams, John H.
    Liu, Xiaoming
    GENOME BIOLOGY, 2023, 24 (01)
  • [7] Prioritizing Functionally Relevant Lung Cancer Risk Variants Using a Novel Computational Framework
    Betti, Michael J.
    Aldrich, Melinda C.
    Gamazon, Eric R.
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 480 - 481
  • [8] Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X
    Yu Liu
    Chunliang Li
    Shuhong Shen
    Xiaolong Chen
    Karol Szlachta
    Michael N. Edmonson
    Ying Shao
    Xiaotu Ma
    Judith Hyle
    Shaela Wright
    Bensheng Ju
    Michael C. Rusch
    Yanling Liu
    Benshang Li
    Michael Macias
    Liqing Tian
    John Easton
    Maoxiang Qian
    Jun J. Yang
    Shaoyan Hu
    A. Thomas Look
    Jinghui Zhang
    Nature Genetics, 2020, 52 : 811 - 818
  • [9] Discovery of regulatory noncoding variants in individual cancer genomes by using cis-X
    Liu, Yu
    Li, Chunliang
    Shen, Shuhong
    Chen, Xiaolong
    Szlachta, Karol
    Edmonson, Michael N.
    Shao, Ying
    Ma, Xiaotu
    Hyle, Judith
    Wright, Shaela
    Ju, Bensheng
    Rusch, Michael C.
    Liu, Yanling
    Li, Benshang
    Macias, Michael
    Tian, Liqing
    Easton, John
    Qian, Maoxiang
    Yang, Jun J.
    Hu, Shaoyan
    Look, A. Thomas
    Zhang, Jinghui
    NATURE GENETICS, 2020, 52 (08) : 811 - +
  • [10] Finding Needles in the Haystack: Strategies for Uncovering Noncoding Regulatory Variants
    Chen, You
    Paramo, Mauricio I.
    Zhang, Yingying
    Yao, Li
    Shah, Sagar R.
    Jin, Yiyang
    Zhang, Junke
    Pan, Xiuqi
    Yu, Haiyuan
    ANNUAL REVIEW OF GENETICS, 2023, 57 : 201 - 222