Multidimensional corrections to cell-centered finite volume methods for Maxwell equations

被引:2
|
作者
Bidégaray, B
Ghidaglia, JM
机构
[1] Ecole Normal Super Cachan, CNRS UMR 8536, Ctr Math & Leurs Applicat, F-94235 Cachan, France
[2] Univ Toulouse 3, CNRS UMR 5640, F-31062 Toulouse 4, France
[3] Imag Lab Grenoble, Lab Modelisat & Calcul, CNRS UMR 5523, F-38041 Grenoble 9, France
关键词
Data structures - Finite volume method - Functions - Integral equations;
D O I
10.1016/S0168-9274(02)00171-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multidimensional corrections to cell-centered finite volume methods for Maxwell equations were developed. The multidimensional approach took into account the structure of the equations. The results presented a first step towards a study which included charge and current densities, and more complex media.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 50 条
  • [21] Cell-centered finite volume discretizations for deformable porous media
    Nordbotten, Jan Martin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (06) : 399 - 418
  • [22] Cell-centered finite-volume-based perfectly matched layer for time-domain Maxwell system
    Sankaran, K
    Fumeaux, C
    Vahldieck, R
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (03) : 1269 - 1276
  • [23] Stability analysis and improvement of the solution reconstruction for cell-centered finite volume methods on unstructured meshes
    Zangeneh, Reza
    Ollivier-Gooch, Carl F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 393 : 375 - 405
  • [24] A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes
    Zou, Dongyang
    Xu, Chunguang
    Dong, Haibo
    Liu, Jun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 345 : 866 - 882
  • [25] Applications of shock-fitting technique for compressible flow in cell-centered finite volume methods
    Zou D.
    Liu J.
    Zou L.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2017, 38 (11):
  • [26] A multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal MHD equations
    Tremblin, Pascal
    Bulteau, Solene
    Kokh, Samuel
    Padioleau, Thomas
    Delorme, Maxime
    Strugarek, Antoine
    Gonzalez, Matthias
    Brun, Allan Sacha
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [27] Enhanced cell-centered finite differences for elliptic equations on general geometry
    Arbogast, T
    Dawson, CN
    Keenan, PT
    Wheeler, MF
    Yotov, I
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02): : 404 - 425
  • [28] A posteriori residual error estimation of a cell-centered finite volume method
    Nicaise, S
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (05) : 419 - 424
  • [29] Generalized cell-centered finite volume methods: application to two-phase flow in porous media
    Chavent, G
    Jaffre, J
    Roberts, JE
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 231 - 241
  • [30] Developing a physical influence upwind scheme for pressure-based cell-centered finite volume methods
    Vakilipour, Shidvash
    Mohammadi, Masoud
    Badrkhani, Vahid
    Ormiston, Scott
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 89 (1-2) : 43 - 70