Classification of gradient steady Ricci solitons with linear curvature decay

被引:9
|
作者
Deng, Yuxing [1 ]
Zhu, Xiaohua [2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, BICMR, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Ricci flow; steady Ricci solitons; rotational symmetry; ROTATIONAL SYMMETRY;
D O I
10.1007/s11425-019-1548-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study steady Ricci solitons with a linear decay of sectional curvature. In particular, we give a complete classification of 3-dimensional steady Ricci solitons and 4-dimensional kappa-noncollapsed steady Ricci solitons with non-negative sectional curvature under the linear curvature decay.
引用
收藏
页码:135 / 154
页数:20
相关论文
共 50 条
  • [41] On Shrinking Gradient Ricci Solitons with Positive Ricci Curvature and Small Weyl Tensor
    Zhuhong Zhang
    Chih-Wei Chen
    Acta Mathematica Scientia, 2019, 39 : 1235 - 1239
  • [42] Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature
    Deng, Yuxing
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (1-2) : 211 - 226
  • [43] Complete non-compact gradient Ricci solitons with nonnegative Ricci curvature
    Yuxing Deng
    Xiaohua Zhu
    Mathematische Zeitschrift, 2015, 279 : 211 - 226
  • [44] ON SHRINKING GRADIENT RICCI SOLITONS WITH POSITIVE RICCI CURVATURE AND SMALL WEYL TENSOR
    Zhang, Zhuhong
    Chen, Chih-Wei
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (05) : 1235 - 1239
  • [45] Integral Ricci curvature bounds along geodesics for nonexpanding gradient Ricci solitons
    Chow, Bennett
    Lu, Peng
    Yang, Bo
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 42 (02) : 279 - 285
  • [46] GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES
    Kang, Yutae
    Kim, Jongsu
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02): : 585 - 594
  • [47] Compact gradient shrinking Ricci solitons with positive curvature operator
    Xiaodong Cao
    The Journal of Geometric Analysis, 2007, 17
  • [48] Compact almost Ricci solitons with constant scalar curvature are gradient
    A. Barros
    R. Batista
    E. Ribeiro
    Monatshefte für Mathematik, 2014, 174 : 29 - 39
  • [49] Compact almost Ricci solitons with constant scalar curvature are gradient
    Barros, A.
    Batista, R.
    Ribeiro, E., Jr.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01): : 29 - 39
  • [50] Compact gradient shrinking Ricci solitons with positive curvature operator
    Cao, Xiaodong
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) : 425 - 433