Dynamic Computing Random Access Memory: a brain-inspired computing paradigm with memelements

被引:0
|
作者
Di Ventra, Massimiliano [1 ]
Traversa, Fabio L. [1 ]
Bonani, Fabrizio [2 ]
Pershin, Yuriy V. [3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Politecn Torino, Dipartimento Elettron, I-10129 Turin, Italy
[3] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA
[4] Univ South Carolina, Univ South Carolina Nanoctr, Columbia, SC 29208 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss the implementation of a novel approach to computing named memcomputing using memelements - in particular memcapacitive systems. It is shown that solid-state memcapacitive systems are ideal to implement such a concept since they support information processing and storage at the same physical location at low-energy cost. This feature can be used to perform boolean logic functions "on demand" directly in memory. In this paper, we develop the idea of a memcapacitive dynamic computing random access memory introducing a novel computing scheme based on Voltage Sense Amplifiers, and discussing some features of information storage in internal states of memcapacitive systems in the presence of leakage currents.
引用
收藏
页码:1070 / 1073
页数:4
相关论文
共 50 条
  • [41] Memristive crossbar arrays for brain-inspired computing
    Qiangfei Xia
    J. Joshua Yang
    Nature Materials, 2019, 18 : 309 - 323
  • [42] A review of basic software for brain-inspired computing
    Qu, Peng
    Yang, Le
    Zheng, Weimin
    Zhang, Youhui
    CCF TRANSACTIONS ON HIGH PERFORMANCE COMPUTING, 2022, 4 (01) : 34 - 42
  • [43] Emerging Optoelectronic Devices for Brain-Inspired Computing
    Hu, Lingxiang
    Zhuge, Xia
    Wang, Jingrui
    Wei, Xianhua
    Zhang, Li
    Chai, Yang
    Xue, Xiaoyong
    Ye, Zhizhen
    Zhuge, Fei
    ADVANCED ELECTRONIC MATERIALS, 2024,
  • [44] A review of basic software for brain-inspired computing
    Peng Qu
    Le Yang
    Weimin Zheng
    Youhui Zhang
    CCF Transactions on High Performance Computing, 2022, 4 : 34 - 42
  • [45] Multi-grained system integration for hybrid-paradigm brain-inspired computing
    Jing Pei
    Lei Deng
    Cheng Ma
    Xue Liu
    Luping Shi
    Science China Information Sciences, 2023, 66
  • [46] Tutorial: Brain-inspired computing using phase-change memory devices
    Sebastian, Abu
    Le Gallo, Manuel
    Burr, Geoffrey W.
    Kim, Sangbum
    BrightSky, Matthew
    Eleftheriou, Evangelos
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (11)
  • [47] Multi-grained system integration for hybrid-paradigm brain-inspired computing
    Pei, Jing
    Deng, Lei
    Ma, Cheng
    Liu, Xue
    Shi, Luping
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (04)
  • [48] Multi-grained system integration for hybrid-paradigm brain-inspired computing
    Jing PEI
    Lei DENG
    Cheng MA
    Xue LIU
    Luping SHI
    ScienceChina(InformationSciences), 2023, 66 (04) : 272 - 285
  • [49] Part 1: Tutorial series on brain-inspired computing
    Shun-ichi Amari
    New Generation Computing, 2005, 23 : 357 - 359
  • [50] Phase Change Random Access Memory for Neuro-Inspired Computing
    Wang, Qiang
    Niu, Gang
    Ren, Wei
    Wang, Ruobing
    Chen, Xiaogang
    Li, Xi
    Ye, Zuo-Guang
    Xie, Ya-Hong
    Song, Sannian
    Song, Zhitang
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (06)