Enrichment of statistical power for genome-wide association studies

被引:87
|
作者
Li, Meng [1 ,2 ]
Liu, Xiaolei [2 ]
Bradbury, Peter [3 ]
Yu, Jianming [4 ]
Zhang, Yuan-Ming [5 ]
Todhunter, Rory J. [6 ]
Buckler, Edward S. [2 ,3 ]
Zhang, Zhiwu [2 ,7 ,8 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Nanjing 210095, Jiangsu, Peoples R China
[2] Cornell Univ, Inst Genom Divers, Ithaca, NY USA
[3] USDA ARS, Ithaca, NY 14853 USA
[4] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA
[5] Nanjing Agr Univ, Coll Agr, Natl Ctr Soybean Improvement, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[6] Cornell Univ, Coll Vet Med, Dept Clin Sci, Ithaca, NY 14853 USA
[7] Northeast Agr Univ, Coll Agron, Harbin 150030, Heilongjiang, Peoples R China
[8] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA
来源
BMC BIOLOGY | 2014年 / 12卷
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Genome wide association study; population structure; kinship; mixed model; cluster analysis; STRUCTURED POPULATIONS; FLOWERING TIME; COMPLEX TRAITS; MODEL APPROACH; LOCI; VARIANTS; SAMPLES; GWAS;
D O I
10.1186/s12915-014-0073-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The inheritance of most human diseases and agriculturally important traits is controlled by many genes with small effects. Identifying these genes, while simultaneously controlling false positives, is challenging. Among available statistical methods, the mixed linear model (MLM) has been the most flexible and powerful for controlling population structure and individual unequal relatedness (kinship), the two common causes of spurious associations. The introduction of the compressed MLM (CMLM) method provided additional opportunities for optimization by adding two new model parameters: grouping algorithms and number of groups. Results: This study introduces another model parameter to develop an enriched CMLM (ECMLM). The parameter involves algorithms to define kinship between groups (that is, kinship algorithms). The ECMLM calculates kinship using several different algorithms and then chooses the best combination between kinship algorithms and grouping algorithms. Conclusion: Simulations show that the ECMLM increases statistical power. In some cases, the magnitude of power gained by using ECMLM instead of CMLM is larger than the improvement found by using CMLM instead of MLM.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Gowinda: unbiased analysis of gene set enrichment for genome-wide association studies
    Kofler, Robert
    Schloetterer, Christian
    [J]. BIOINFORMATICS, 2012, 28 (15) : 2084 - 2085
  • [42] GENOME-WIDE ASSOCIATION STUDIES Validating, augmenting and refining genome-wide association signals
    Ioannidis, John P. A.
    Thomas, Gilles
    Daly, Mark J.
    [J]. NATURE REVIEWS GENETICS, 2009, 10 (05) : 318 - 329
  • [43] Statistical analysis for genome-wide association study
    Ping Zeng
    Yang Zhao
    Cheng Qian
    Liwei Zhang
    Ruyang Zhang
    Jianwei Gou
    Jin Liu
    Liya Liu
    Feng Chen
    [J]. The Journal of Biomedical Research, 2015, 29 (04) : 285 - 297
  • [44] Pulmonary Function: From Genome-Wide Association Studies to Genome-Wide Interaction Studies
    Christiani, David C.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (05) : 557 - 559
  • [45] Statistical analysis for genome-wide association study
    Zeng, Ping
    Zhao, Yang
    Qian, Cheng
    Zhang, Liwei
    Zhang, Ruyang
    Gou, Jianwei
    Liu, Jin
    Liu, Liya
    Chen, Feng
    [J]. JOURNAL OF BIOMEDICAL RESEARCH, 2015, 29 (04): : 285 - 297
  • [46] Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
    Bettina Mieth
    Marius Kloft
    Juan Antonio Rodríguez
    Sören Sonnenburg
    Robin Vobruba
    Carlos Morcillo-Suárez
    Xavier Farré
    Urko M. Marigorta
    Ernst Fehr
    Thorsten Dickhaus
    Gilles Blanchard
    Daniel Schunk
    Arcadi Navarro
    Klaus-Robert Müller
    [J]. Scientific Reports, 6
  • [47] Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
    Mieth, Bettina
    Kloft, Marius
    Rodriguez, Juan Antonio
    Sonnenburg, Soren
    Vobruba, Robin
    Morcillo-Suarez, Carlos
    Farre, Xavier
    Marigorta, Urko M.
    Fehr, Ernst
    Dickhaus, Thorsten
    Blanchard, Gilles
    Schunk, Daniel
    Navarro, Arcadi
    Mueller, Klaus-Robert
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [48] Statistical Methods for Association Tests of Multiple Continuous Traits in Genome-Wide Association Studies
    Wu, Baolin
    Pankow, James S.
    [J]. ANNALS OF HUMAN GENETICS, 2015, 79 (04) : 282 - 293
  • [49] Genome-wide association studies in ADHD
    Franke, Barbara
    Neale, Benjamin M.
    Faraone, Stephen V.
    [J]. HUMAN GENETICS, 2009, 126 (01) : 13 - 50
  • [50] Genome-Wide Association Studies of Autism
    Glessner J.T.
    Connolly J.J.
    Hakonarson H.
    [J]. Current Behavioral Neuroscience Reports, 2014, 1 (4) : 234 - 241