The Pickands representation of survival Marshall-Olkin copulas

被引:4
|
作者
Mai, Jan-Frederik [1 ]
Scherer, Matthias [1 ]
机构
[1] Tech Univ Munich, HVB Inst Math Finance, D-85748 Garching, Germany
关键词
TAIL DEPENDENCE;
D O I
10.1016/j.spl.2009.11.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Pickands representation of an arbitrary survival Marshall-Olkin copula is computed. In dimension d >= 2, the corresponding dependence measure is discrete with support consisting of 2(d) -1 atoms on the d-dimensional unit simplex. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:357 / 360
页数:4
相关论文
共 50 条
  • [21] The Marshall-Olkin exponential Weibull distribution
    Pogany, Tibor K.
    Saboor, Abdus
    Provost, Serge
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1579 - 1594
  • [22] Recent developments in Marshall-Olkin distributions
    Gillariose, Jiju
    Tomy, Lishamol
    Chesneau, Christophe
    Jose, Manju
    CONTRIBUTIONS TO MATHEMATICS, 2020, 2 : 71 - 75
  • [23] The Exponentiated Marshall-Olkin Frechet Distribution
    Mansour, Mahmoud M.
    Abd Elrazik, Enayat M.
    Butt, Nadeem Shafique
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2018, 14 (01) : 57 - 74
  • [24] Marshall-Olkin distributions: a bibliometric study
    Isidro Jesús González-Hernández
    Rafael Granillo-Macías
    Carlos Rondero-Guerrero
    Isaías Simón-Marmolejo
    Scientometrics, 2021, 126 : 9005 - 9029
  • [25] THE BETA MARSHALL-OLKIN LOMAX DISTRIBUTION
    Tablada, Claudio J.
    Cordeiro, Gauss M.
    REVSTAT-STATISTICAL JOURNAL, 2019, 17 (03) : 321 - 344
  • [26] On Marshall-Olkin Extended Weibull Distribution
    Hanan Haj Ahmad
    Omar M. Bdair
    M. Ahsanullah
    Journal of Statistical Theory and Applications, 2017, 16 (1): : 1 - 17
  • [27] Marshall-Olkin Lehmann Lomax Distribution: Theory, Statistical Properties, Copulas and Real Data Modeling
    Aboraya, Mohamed
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2021, 17 (02) : 509 - 530
  • [28] On the Marshall-Olkin extended Weibull distribution
    Cordeiro, Gauss M.
    Lemonte, Artur J.
    STATISTICAL PAPERS, 2013, 54 (02) : 333 - 353
  • [29] Applications of Marshall-Olkin Frechet Distribution
    Krishna, E.
    Jose, K. K.
    Ristic, Miroslav M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) : 76 - 89
  • [30] THE MARSHALL-OLKIN GOMPERTZ DISTRIBUTION: PROPERTIES AND APPLICATIONS
    Eghwerido, Joseph Thomas
    Ogbo, Joel Oruaoghene
    Omotoye, Adebola Evelyn
    STATISTICA, 2021, 81 (02) : 183 - 215