A GRAPH-CUT-BASED METHOD FOR SPATIO-TEMPORAL SEGMENTATION OF FIRE FROM SATELLITE OBSERVATIONS

被引:1
|
作者
Tarabalka, Yuliya [1 ]
Charpiat, Guillaume [2 ]
机构
[1] INRIA Sophia Antipolis Mediterranee, AYIN, 2004 Route Lucioles, F-06902 Sophia Antipolis, France
[2] INRIA Sophia Antipolis Mediterranee, STARS Teams, F-06902 Sophia Antipolis, France
关键词
Segmentation; fire mapping; graph cut; spatio-temporal graph; MODIS;
D O I
10.1109/IGARSS.2013.6723582
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new method based on graph cuts for the segmentation of burned areas in time series of satellite images. The method consists in rewriting a segmentation problem as a (s, t)-min-cut on the spatio-temporal image graph and computing this minimal cut. As burned areas grow in time, we introduce growth constraint in graph cuts by using directed infinite links connecting pixels at the same spatial locations in successive image frames. This method guarantees to find the globally optimal segmentation satisfying the growth constraint in small time complexity. Experimental results on a set of MODIS measurements over the Northern Australia demonstrated that the new approach succeeded in combining both spatial and temporal information for accurate segmentation of burned areas.
引用
收藏
页码:3494 / 3497
页数:4
相关论文
共 50 条
  • [21] Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations
    Rashki, A.
    Kaskaoutis, D. G.
    Eriksson, P. G.
    Rautenbach, C. J. de W.
    Flamant, C.
    Vishkaee, F. Abdi
    NATURAL HAZARDS, 2014, 71 (01) : 563 - 585
  • [22] Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations
    A. Rashki
    D. G. Kaskaoutis
    P. G. Eriksson
    C. J. de W. Rautenbach
    C. Flamant
    F. Abdi Vishkaee
    Natural Hazards, 2014, 71 : 563 - 585
  • [23] GRAPH DYNAMIC EARTH NET: SPATIO-TEMPORAL GRAPH BENCHMARK FOR SATELLITE IMAGE TIME SERIES
    Dufourg, Corentin
    Pelletier, Charlotte
    May, Stephane
    Lefevre, Sebastien
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7164 - 7167
  • [24] 3D SPATIO-TEMPORAL GRAPH CUTS FOR VIDEO OBJECTS SEGMENTATION
    Tian, Zhiqiang
    Xue, Jianru
    Zheng, Nanning
    Lan, Xuguang
    Li, Ce
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [25] Spatio-temporal segmentation of mesoscale ocean surface dynamics using satellite data
    Tandeo, Pierre
    Fablet, Ronan
    Garello, Rene
    2013 MTS/IEEE OCEANS - BERGEN, 2013,
  • [26] A Spatio-Temporal Traffic Flow Prediction Method Based on Dynamic Graph Convolution Network
    Yang, Guoliang
    Yu, Huasheng
    Xi, Hao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5364 - 5369
  • [27] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [28] Estimating Spatio-Temporal Building Power Consumption Based on Graph Convolution Network Method
    Vontzos, Georgios
    Laitsos, Vasileios
    Charakopoulos, Avraam
    Bargiotas, Dimitrios
    Karakasidis, Theodoros E.
    DYNAMICS, 2024, 4 (02): : 337 - 356
  • [29] UAV network intrusion detection method based on spatio-temporal graph convolutional network
    Chen Z.
    Lyu N.
    Chen K.
    Zhang Y.
    Gao W.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (05): : 1068 - 1076
  • [30] SVM spatio-temporal classification of HR satellite image time series using graph based kernel
    Rejichi, Safa
    Chaabane, Ferdaous
    2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 390 - 395