Explainable artificial intelligence: an analytical review

被引:249
|
作者
Angelov, Plamen P. [1 ,2 ]
Soares, Eduardo A. [1 ,2 ]
Jiang, Richard [1 ,2 ]
Arnold, Nicholas I. [1 ,3 ]
Atkinson, Peter M. [2 ,3 ]
机构
[1] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4WA, England
[2] Lancaster Intelligent Robot & Autonomous Syst LIR, Lancaster, England
[3] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
关键词
black-box models; deep learning; explainable AI; machine learning; prototype-based models; surrogate models; BLACK-BOX; NEURAL-NETWORKS; EXPLANATIONS;
D O I
10.1002/widm.1424
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper provides a brief analytical review of the current state-of-the-art in relation to the explainability of artificial intelligence in the context of recent advances in machine learning and deep learning. The paper starts with a brief historical introduction and a taxonomy, and formulates the main challenges in terms of explainability building on the recently formulated National Institute of Standards four principles of explainability. Recently published methods related to the topic are then critically reviewed and analyzed. Finally, future directions for research are suggested. This article is categorized under: Technologies > Artificial Intelligence Fundamental Concepts of Data and Knowledge > Explainable AI
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Review and Prospect of Explainable Artificial Intelligence and Its Application in Power Systems
    Wang, Xiaojun
    Dou, Jiaming
    Liu, Zhao
    Liu, Changyu
    Pu, Tianjiao
    He, Jinghan
    [J]. Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (04): : 169 - 191
  • [42] Physiological signal analysis using explainable artificial intelligence: A systematic review
    Shen, Jian
    Wu, Jinwen
    Liang, Huajian
    Zhao, Zeguang
    Li, Kunlin
    Zhu, Kexin
    Wang, Kang
    Ma, Yu
    Hu, Wenbo
    Guo, Chenxu
    Zhang, Yanan
    Hu, Bin
    [J]. Neurocomputing, 2025, 618
  • [43] Memristive Explainable Artificial Intelligence Hardware
    Song, Hanchan
    Park, Woojoon
    Kim, Gwangmin
    Choi, Moon Gu
    In, Jae Hyun
    Rhee, Hakseung
    Kim, Kyung Min
    [J]. ADVANCED MATERIALS, 2024, 36 (25)
  • [44] Effects of Explainable Artificial Intelligence in Neurology
    Gombolay, G.
    Silva, A.
    Schrum, M.
    Dutt, M.
    Hallman-Cooper, J.
    Gombolay, M.
    [J]. ANNALS OF NEUROLOGY, 2023, 94 : S145 - S145
  • [45] Drug discovery with explainable artificial intelligence
    Jimenez-Luna, Jose
    Grisoni, Francesca
    Schneider, Gisbert
    [J]. NATURE MACHINE INTELLIGENCE, 2020, 2 (10) : 573 - 584
  • [46] Drug discovery with explainable artificial intelligence
    José Jiménez-Luna
    Francesca Grisoni
    Gisbert Schneider
    [J]. Nature Machine Intelligence, 2020, 2 : 573 - 584
  • [47] Explainable Artificial Intelligence for Combating Cyberbullying
    Tesfagergish, Senait Gebremichael
    Damasevicius, Robertas
    [J]. SOFT COMPUTING AND ITS ENGINEERING APPLICATIONS, PT 1, ICSOFTCOMP 2023, 2024, 2030 : 54 - 67
  • [48] Explainable and responsible artificial intelligence PREFACE
    Meske, Christian
    Abedin, Babak
    Klier, Mathias
    Rabhi, Fethi
    [J]. ELECTRONIC MARKETS, 2022, 32 (04) : 2103 - 2106
  • [49] Explainable Artificial Intelligence and Machine Learning
    Raunak, M. S.
    Kuhn, Rick
    [J]. COMPUTER, 2021, 54 (10) : 25 - 27
  • [50] From Explainable to Reliable Artificial Intelligence
    Narteni, Sara
    Ferretti, Melissa
    Orani, Vanessa
    Vaccari, Ivan
    Cambiaso, Enrico
    Mongelli, Maurizio
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION (CD-MAKE 2021), 2021, 12844 : 255 - 273