Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications

被引:0
|
作者
Nadaban, Sorin [1 ]
Dzitac, Ioan [1 ,2 ]
机构
[1] Aurel Vlaicu Univ Arad, Dept Math & Comp Sci, RO-310330 Arad, Romania
[2] Agora Univ Oradea, Dept Social Sci, RO-485526 Oradea, Romania
关键词
fuzzy wavelet; atomic decomposition; fuzzy metric space; fuzzy norm; fuzzy normed linear space (FNLS); INTEGRABLE GROUP-REPRESENTATIONS; VECTOR-SPACES; COMPRESSION; TRANSFORM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wavelet analysis is a powerful tool with modern applications as diverse as: image processing, signal processing, data compression, data mining, speech recognition, computer graphics, etc. The aim of this paper is to introduce the concept of atomic decomposition of fuzzy normed linear spaces, which play a key role in the development of fuzzy wavelet theory. Atomic decompositions appeared in applications to signal processing and sampling theory among other areas. First we give a general definition of fuzzy normed linear spaces and we obtain decomposition theorems for fuzzy norms into a family of semi-norms, within more general settings. The results are both for Bag-Samanta fuzzy norms and for Katsaras fuzzy norms. As a consequence, we obtain locally convex topologies induced by this types of fuzzy norms. The results established in this paper, constitute a foundation for the development of fuzzy operator theory and fuzzy wavelet theory within this more general frame.
引用
收藏
页码:643 / 662
页数:20
相关论文
共 50 条
  • [11] Statistical convergence in fuzzy normed linear spaces
    Sencimen, C.
    Pehlivan, S.
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (03) : 361 - 370
  • [12] Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces
    Kider, Jehad R.
    Kadhum, Noor A.
    [J]. BAGHDAD SCIENCE JOURNAL, 2019, 16 (01) : 104 - 110
  • [13] Fuzzy Bounded Linear Operator in Fuzzy Normed Linear Spaces and its Fuzzy Compactness
    Sharma, Mami
    Hazarika, Debajit
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2020, 16 (01) : 177 - 193
  • [14] Atomic decompositions of Lorentz martingale spaces and applications
    Jiao Yong
    Peng Lihua
    Liu Peide
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2009, 7 (02): : 153 - 166
  • [15] Intuitionistic Fuzzy Pseudo-Normed Linear Spaces
    Dinda, Bivas
    Ghosh, Santanu Kumar
    Samanta, T. K.
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2019, 15 (01) : 113 - 127
  • [16] On (fuzzy) pseudo-semi-normed linear spaces
    Wu, Yaoqiang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 467 - 477
  • [17] Statistical convergence of order β in fuzzy normed linear spaces
    Cinar, Muhammed
    Et, Mikail
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (04) : 3535 - 3540
  • [18] An Introduction to Spectral Theory in Fuzzy Normed Linear Spaces
    Oprea, Ramona Ioana
    Flavius, Pater
    Juratoni, Adina
    Bundau, Olivia
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [19] The comparative study of gradual and fuzzy normed linear spaces
    Sadeqi, Ildar
    Azari, Farnaz Yaqub
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (02) : 1195 - 1198
  • [20] Fixed point theorems on fuzzy normed linear spaces
    Bag, T.
    Samanta, S. K.
    [J]. INFORMATION SCIENCES, 2006, 176 (19) : 2910 - 2931