Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions

被引:62
|
作者
Duzan, HM [1 ]
Zhou, X [1 ]
Souleimanov, A [1 ]
Smith, DL [1 ]
机构
[1] McGill Univ, Dept Plant Sci, Ste Anne De Bellevue, PQ H9X 3V9, Canada
关键词
abiotic stress; Nod factor; root hair deformation; soybean;
D O I
10.1093/jxb/erh265
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Suboptimal growth conditions, such as low rhizosphere temperature, high salinity, and low pH can negatively affect the rhizobia-legume symbioses, resulting in poor nodulation and lower amounts of nitrogen fixed. Early stages of the Bradyrhizobium japonicum-soybean [Glycine max (L.) Merr.] symbiosis, such as excretion of genistein (the plant-to-bacteria signal) and infection initiation can be inhibited by abiotic stresses; however, the effect on early events modulated by Nod factors (bacteria-to-plant signalling), particularly root hair deformations is unknown. Thus, the objective of this study was to evaluate the perception of Nod factor by soybean root hairs under three stress conditions: low temperature, low pH, and high salinity. Three experiments were conducted using a 1:1 ratio of Nod Bj-V (C-18:1, MeFuc) and Nod Bj-V (Ac, C-16:0, MeFuc). Nod factor induced four types of root hair deformation (HAD), wiggling, bulging, curling, and branching. Under optimal experimental conditions root hair response to the three levels of Nod factor tested (10(-6), 10(-8), and 10(-10) M) was dose-dependent. The highest frequency of root hair deformations was elicited by the 10(-6) M level. Root hair deformation decreased with temperature (25, 17, and 15 degreesC), low pH, and high salinity. Nod factor concentration did not interact with either low temperature or pH. However, salinity strongly inhibited HAD responses to increases in Nod factor concentration. Thus, the addition of higher levels of Nod factor is able to overcome the effects of low pH and temperature stress, but not salinity.
引用
收藏
页码:2641 / 2646
页数:6
相关论文
共 50 条
  • [21] GROWTH AND PRODUCTIVITY OF SOYBEAN (GLYCINE MAX (L.) MERR.) GENOTYPES UNDER SHADING
    Wahyuningsih, S.
    Sundari, T.
    Sutrisno
    Harnowo, D.
    Harsono, A.
    Soehendi, R.
    Mejaya, M. J.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2021, 19 (05): : 3377 - 3392
  • [22] Soybean (Glycine max (L.) Merr.):: utilization, genetics, biotechnology
    Zeller, FJ
    BODENKULTUR, 1999, 50 (03): : 191 - 202
  • [23] Response of soybean [Glycine max (L.) Merr.] cultivars to genistein-preincubated Bradyrhizobium japonicum:: Nodulation and dry matter accumulation under Canadian short-season conditions
    Belkheir, AM
    Zhou, X
    Smith, DL
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2000, 185 (03) : 167 - 175
  • [24] Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit
    Ramlal, Ayyagari
    Mehta, Sahil
    Nautiyal, Aparna
    Baweja, Pooja
    Shivam
    Sharma, Deepshikha
    Lal, S. K.
    Vijayan, Roshni
    Raju, Dhandapani
    Subramaniam, Sreeramanan
    Rajendran, Ambika
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2024, 60 (01) : 1 - 15
  • [25] SSR diversity of vegetable soybean [Glycine max (L.) merr.]
    Mimura, Makiko
    Coyne, Clarice J.
    Bambuck, Marie W.
    Lumpkin, Thomas A.
    GENETIC RESOURCES AND CROP EVOLUTION, 2007, 54 (03) : 497 - 508
  • [26] Effect of nodulation with Bradyrhizobium japonicum and Shinorhizobium fredii on xylem sap composition of Peking (Glycine max L. Merr.)
    Yamakawa, T
    Ishizuka, J
    SOIL SCIENCE AND PLANT NUTRITION, 2002, 48 (04) : 521 - 527
  • [27] SSR Diversity of Vegetable Soybean [Glycine max (L.) Merr.]
    Makiko Mimura
    Clarice J. Coyne
    Marie W. Bambuck
    Thomas A. Lumpkin
    Genetic Resources and Crop Evolution, 2007, 54 : 497 - 508
  • [28] Soybean (Glycine max (L.) Merr.) cultivar tolerance to sulfentrazone
    Hulting, AG
    Wax, LM
    Nelson, RL
    Simmons, FW
    CROP PROTECTION, 2001, 20 (08) : 679 - 683
  • [29] GENOTYPIC SPECIFICITY OF SOYBEAN [GLYCINE MAX (L) MERR.] UNDER CONDITIONS OF FOLIAR FERTILIZATION
    Popovic, Vera
    Glamoclija, Dorde
    Sikora, Vladimir
    Dekic, Vera
    Cervenski, Janko
    Simic, Divna
    Ilin, Sonja
    ROMANIAN AGRICULTURAL RESEARCH, 2013, 30 : 259 - 270
  • [30] Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit
    Ayyagari Ramlal
    Sahil Mehta
    Aparna Nautiyal
    Pooja Baweja
    Deepshikha Shivam
    S. K. Sharma
    Roshni Lal
    Dhandapani Vijayan
    Sreeramanan Raju
    Ambika Subramaniam
    In Vitro Cellular & Developmental Biology - Plant, 2024, 60 : 1 - 15