A Study on SARS-CoV-2 (COVID-19) and Machine Learning Based Approach to Detect COVID-19 Through X-Ray Images

被引:3
|
作者
Gupta, Anuj Kumar [1 ]
Sharma, Manvinder [2 ]
Sharma, Ankit [3 ]
Menon, Vikas [4 ]
机构
[1] Chandigarh Grp Coll Landran, Dept Comp Sci & Engn, Mohali, Punjab, India
[2] Chandigarh Grp Coll Landran, Dept Elect & Commun, Mohali, India
[3] Stellar Life Care, New Delhi, India
[4] Chandigarh Grp Coll, Dept Biotechnol, Landran, Punjab, India
关键词
COVID-19; SARS-CoV-2; deep learning; radiography image;
D O I
10.1142/S0219467821400106
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
From origin in Wuhan city of China, a highly communicable and deadly virus is spreading in the entire world and is known as COVID-19. COVID-19 is a new species of coronavirus which is affecting respiratory system of human. The virus is known as severe acute respiratory syndrome (SARS) coronavirus 2 abbreviated as SARS-CoV-2 and generally known as coronavirus disease COVID-19. This is growing day by day in countries. The symptoms include fever, cough and difficulty in breathing. As there is no vaccine made for this virus and COVID-19 tests are not readily available, this is causing panic. Various Artificial Intelligence-based algorithms and frameworks are being developed to detect this virus, but it has not been tested. People are taking advantages of others by providing duplicate COVID-19 test kits. A work is carried out with deep learning to detect presence of COVID 19. With the use of Convolutional Neural networks, the model is trained with dataset of COVID-19 positive and negative X-Rays. The accuracy of training model is 99% and the confusion matrix shows 98% values that are predicted truly. Hence, the model is able to detect the presence of COVID-19.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A machine learning approach for predicting high risk hospitalized patients with COVID-19 SARS-Cov-2
    Bottrighi, Alessio
    Pennisi, Marzio
    Roveta, Annalisa
    Massarino, Costanza
    Cassinari, Antonella
    Betti, Marta
    Bolgeo, Tatiana
    Bertolotti, Marinella
    Rava, Emanuele
    Maconi, Antonio
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [22] MACHINE LEARNING SCREENING OF COVID-19 PATIENTS BASED ON X-RAY IMAGES FOR IMBALANCED CLASSES
    Mrad, Ilyes
    Hamila, Ridha
    Erbad, Aiman
    Hamid, Tahir
    Mazhar, Rashid
    Al-Emadi, Nasser
    PROCEEDINGS OF THE 2021 9TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2021,
  • [23] Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: A machine learning based approach
    Kassani, Sara Hosseinzadeh
    Kassani, Peyman Hosseinzadeh
    Wesolowski, Michal J.
    Schneider, Kevin A.
    Deters, Ralph
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (03) : 867 - 879
  • [24] A Comparison Study to Detect COVID-19 Chest X-Ray Images with SOTA Deep Learning Models
    Liu, Qingzhong
    Chen, Zhongxue
    Liu, Hnery C.
    WORKSHOP ON HEALTHCARE AI AND COVID-19, VOL 184, 2022, 184 : 146 - 153
  • [25] Application of Machine Learning in Diagnosis of COVID-19 Through X-Ray and CT Images: A Scoping Review
    Mohammad-Rahimi, Hossein
    Nadimi, Mohadeseh
    Ghalyanchi-Langeroudi, Azadeh
    Taheri, Mohammad
    Ghafouri-Fard, Soudeh
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [26] COVID-19: The Novel and Lethal Culprit The Extrapulmonary Manifestations of SARS-CoV-2 (COVID-19)
    Shah, Syed Zulfiquar Ali
    Devrajani, Bikha Ram
    Lashari, Naveed Aslam
    PAKISTAN JOURNAL OF MEDICAL & HEALTH SCIENCES, 2021, 15 (06): : 1130 - 1131
  • [27] Chasing COVID-19 through SARS-CoV-2 spike glycoprotein
    Shailendra K. Saxena
    Swatantra Kumar
    Preeti Baxi
    Nishant Srivastava
    Bipin Puri
    R. K. Ratho
    VirusDisease, 2020, 31 (4) : 399 - 407
  • [28] Detection of COVID-19 from X-Ray Images Using Machine Learning Models
    Sakib, Md. Masrul
    Karim, Meem
    Swachchha, Aftab Miraj
    Islam, Maheen
    Lecture Notes in Networks and Systems, 2023, 578 : 759 - 773
  • [29] Detection of COVID-19 Cases Based on Deep Learning with X-ray Images
    Wang, Zhiqiang
    Zhang, Ke
    Wang, Bingyan
    ELECTRONICS, 2022, 11 (21)
  • [30] Mixed attention and regularized COVID-19 network: An approach to detection of COVID-19 with chest x-ray images
    Das, Dolly
    Biswas, Saroj Kumar
    Bandyopadhyay, Sivaji
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1194 - 1222