Flow-induced vibration on a circular cylinder in planar shear flow

被引:25
|
作者
Tu, Jiahuang [1 ]
Zhou, Dai [1 ,2 ,3 ]
Bao, Yan [1 ,4 ]
Fang, Congqi [1 ]
Zhang, Kai [1 ]
Li, Chunxiang [5 ]
Han, Zhaolong [1 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Dept Civil Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Oceanol, Shanghai 200030, Peoples R China
[4] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[5] Shanghai Univ, Dept Civil Engn, Shanghai 200444, Peoples R China
[6] Univ Houston, Cullen Coll Engn, Houston, TX 77204 USA
基金
中国国家自然科学基金;
关键词
Vortex-induced vibration (VIV); Planar shear flow; Shear rate; One degree of freedom; Two degrees of freedom; Finite element method; VORTEX-INDUCED VIBRATIONS; LOW REYNOLDS-NUMBERS; SQUARE CYLINDER; FINITE-ELEMENT; NUMERICAL-SIMULATION; OSCILLATING CYLINDER; TANDEM ARRANGEMENT; CROSS-FLOW; LOW-MASS; WAKE;
D O I
10.1016/j.compfluid.2014.08.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the flow-induced vibrations of an elastically mounted circular cylinder subjected to the planar shear flow with the 1-DOF (only transverse direction) and 2-DOF (in-line and cross-flow directions) movements are studied numerically in the laminar flow (Re = 150). Based on a characteristic-based-split (CBS) finite element method, the numerical simulation is conducted, and is verified through the benchmark problem of the uniform flow past an elastically mounted circular cylinder. The computation is carried out for lower reduced mass of M-r = 2.0 and the structural damping ratio is set to zero to maximize the vortex-induced response of the cylinder. The effects of some key parameters, such as shear rate (k = 0.0-0.1), reduced velocity (U-r = 3.0-12.0) and natural frequency ratio (r = 1.0-2.0), on the characteristics of vortex-induced vibration (VIV) responses are studied. The results show that, in the 1-DOF system, the frequency synchronization region extends with the increasing of k. The shear rate greatly affects the phase portraits, which shift from the double-valued type to the single-valued one. On the other hand, in the 2-DOF system, the increasing of k causes the extension of the single-resonant region and dual-resonant one at the lower natural frequency ratios. While at the higher natural frequency ratios, the change of k only expands the single-resonant region in the transverse direction. The predominant vortex shedding patterns are 2S and P + S modes. Finally, the interaction between vortex and cylinder as well as the mechanism of flow-induced vibration in planar shear flow are revealed. The phase between the force and its corresponding displacement changes from out-of-phase to in-phase and the higher harmonic forces appear with the increasing of shear rate, resulting in the energy transferring from the fluid to the structure and then the dynamic response of the cylinder intensifying. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:138 / 154
页数:17
相关论文
共 50 条
  • [31] Prediction of streamwise flow-induced vibration of a circular cylinder in the first instability range
    Wan-hai Xu
    Jian-xing Yu
    Jie Du
    An-kang Cheng
    Hao Kang
    China Ocean Engineering, 2012, 26 : 555 - 564
  • [32] Two-degree-of-freedom flow-induced vibration of a rotating circular cylinder
    Zou, Qunfeng
    Ding, Lin
    Wang, Haibo
    Wang, Junlei
    Zhang, Li
    OCEAN ENGINEERING, 2019, 191
  • [33] Flow-Induced Vibration of a rotating circular cylinder using position and velocity feedback
    Vicente-Ludlam, D.
    Barrero-Gil, A.
    Velazquez, A.
    JOURNAL OF FLUIDS AND STRUCTURES, 2017, 72 : 127 - 151
  • [34] Computational simulation of the flow-induced vibration of a circular cylinder subjected to wake interference
    Carmo, Bruno S.
    Assi, Gustavo R. S.
    Meneghini, Julio R.
    JOURNAL OF FLUIDS AND STRUCTURES, 2013, 41 : 99 - 108
  • [35] Experimental study on flow-induced vibration of a circular cylinder with a downstream square plate
    Su, Bo
    He, Shihao
    Zhang, Mingjie
    Feng, Jiantong
    OCEAN ENGINEERING, 2022, 247
  • [36] Experimental investigation of in-line flow-induced vibration of a rotating circular cylinder
    Zhao, J.
    Lo Jacono, D.
    Sheridan, J.
    Hourigan, K.
    Thompson, M. C.
    JOURNAL OF FLUID MECHANICS, 2018, 847 : 664 - 699
  • [37] Numerical study of flow-induced vibration of a flexible plate behind a circular cylinder
    Wang, Huakun
    Zhai, Qiu
    Zhang, Jisheng
    OCEAN ENGINEERING, 2018, 163 : 419 - 430
  • [38] Flow-induced vibration control of a circular cylinder using rotational oscillation feedback
    Vicente-Ludlam, D.
    Barrero-Gil, A.
    Velazquez, A.
    JOURNAL OF FLUID MECHANICS, 2018, 847 : 93 - 118
  • [39] Experimental investigation on flow-induced vibration excitation in an elastically mounted circular cylinder in cylinder arrays
    Selvakumar, K. Karthik
    Kumaraswamidhas, L. A.
    FLUID DYNAMICS RESEARCH, 2015, 47 (01) : 1 - 11
  • [40] Flow-induced vibration of a cantilevered cylinder in oscillatory flow at high KC
    Neshamar, Otto E.
    van der A, Dominic A.
    O'Donoghue, Tom
    JOURNAL OF FLUIDS AND STRUCTURES, 2022, 109