Novel approach for evaluating detector-related uncertainties in a LArTPC using MicroBooNE data

被引:11
|
作者
Abratenko, P. [33 ]
An, R. [14 ]
Anthony, J. [4 ]
Arellano, L. [18 ]
Asaadi, J. [32 ]
Ashkenazi, A. [30 ]
Balasubramanian, S. [11 ]
Baller, B. [11 ]
Barnes, C. [20 ]
Barr, G. [23 ]
Basque, V [18 ]
Bathe-Peters, L. [13 ]
Rodrigues, O. Benevides [29 ]
Berkman, S. [11 ]
Bhanderi, A. [18 ]
Bhat, A. [29 ]
Bishai, M. [2 ]
Blake, A. [16 ]
Bolton, T. [15 ]
Book, J. Y. [13 ]
Camilleri, L. [9 ]
Caratelli, D. [11 ]
Terrazas, I. Caro [8 ]
Cavanna, F. [11 ]
Cerati, G. [11 ]
Chen, Y. [1 ]
Cianci, D. [9 ]
Conrad, J. M. [19 ]
Convery, M. [26 ]
Cooper-Troendle, L. [36 ]
Crespo-Anadon, J., I [5 ]
Del Tutto, M. [11 ]
Dennis, S. R. [4 ]
Detje, P. [4 ]
Devitt, A. [16 ]
Diurba, R. [21 ]
Dorrill, R. [14 ]
Duffy, K. [11 ]
Dytman, S. [24 ]
Eberly, B. [28 ]
Ereditato, A. [1 ]
Evans, J. J. [18 ]
Fine, R. [17 ]
Aguirre, G. A. Fiorentini [27 ]
Fitzpatrick, R. S. [20 ]
Fleming, B. T. [36 ]
Foppiani, N. [13 ]
Franco, D. [36 ]
Furmanski, A. P. [21 ]
Garcia-Gamez, D. [12 ]
机构
[1] Univ Bern, CH-3012 Bern, Switzerland
[2] Brookhaven Natl Lab BNL, Upton, NY 11973 USA
[3] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[4] Univ Cambridge, Cambridge CB3 0HE, England
[5] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid 28040, Spain
[6] Univ Chicago, Chicago, IL 60637 USA
[7] Univ Cincinnati, Cincinnati, OH 45221 USA
[8] Colorado State Univ, Ft Collins, CO 80523 USA
[9] Columbia Univ, New York, NY 10027 USA
[10] Univ Edinburgh, Edinburgh EH9 3FD, Midlothian, Scotland
[11] Fermi Natl Accelerator Lab FNAL, Batavia, IL 60510 USA
[12] Univ Granada, Granada 18071, Spain
[13] Harvard Univ, Cambridge, MA 02138 USA
[14] Illinois Inst Technol IIT, Chicago, IL 60616 USA
[15] Kansas State Univ KSU, Manhattan, KS 66506 USA
[16] Univ Lancaster, Lancaster LA1 4YW, England
[17] Los Alamos Natl Lab LANL, Los Alamos, NM 87545 USA
[18] Univ Manchester, Manchester M13 9PL, Lancs, England
[19] MIT, Cambridge, MA 02139 USA
[20] Univ Michigan, Ann Arbor, MI 48109 USA
[21] Univ Minnesota, Minneapolis, MN 55455 USA
[22] New Mexico State Univ NMSU, Las Cruces, NM 88003 USA
[23] Univ Oxford, Oxford OX1 3RH, England
[24] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[25] Rutgers State Univ, Piscataway, NJ 08854 USA
[26] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[27] South Dakota Sch Mines & Technol SDSMT, Rapid City, SD 57701 USA
[28] Univ Southern Maine, Portland, ME 04104 USA
[29] Syracuse Univ, Syracuse, NY 13244 USA
[30] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
[31] Univ Tennessee, Knoxville, TN 37996 USA
[32] Univ Texas Arlington, Arlington, TX 76019 USA
[33] Tufts Univ, Medford, MA 02155 USA
[34] Virginia Tech, Ctr Neutrino Phys, Blacksburg, VA 24061 USA
[35] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[36] Yale Univ, Dept Phys, Wright Lab, New Haven, CT 06520 USA
来源
EUROPEAN PHYSICAL JOURNAL C | 2022年 / 82卷 / 05期
基金
美国国家科学基金会; 瑞士国家科学基金会; 英国科学技术设施理事会; 欧盟地平线“2020”;
关键词
ELECTRON-DIFFUSION;
D O I
10.1140/epjc/s10052-022-10270-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Primary challenges for current and future precision neutrino experiments using liquid argon time projection chambers (LArTPCs) include understanding detector effects and quantifying the associated systematic uncertainties. This paper presents a novel technique for assessing and propagating LArTPC detector-related systematic uncertainties. The technique makes modifications to simulation waveforms based on a parameterization of observed differences in ionization signals from the TPC between data and simulation, while remaining insensitive to the details of the detector model. The modifications are then used to quantify the systematic differences in low- and high-level reconstructed quantities. This approach could be applied to future LArTPC detectors, such as those used in SBN and DUNE.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Novel Approach for Palm Vein Feature Extraction using Gabor and Canny Edge Detector
    Raut, Shriram D.
    Humbe, Vikas T.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2015, : 385 - 388
  • [32] A Novel Approach for Product Recommendation Using Smartphone Sensor Data
    Chowdhury, Moontaha Nishat
    Haque, H M Zabir
    Tahmid, Kazi Taqi
    Salma, Fatema-Tuz-Zohora
    Ahmed, Nafisa
    [J]. International Journal of Interactive Mobile Technologies, 2022, 16 (16) : 190 - 204
  • [33] A Novel Approach to Geocaching Event Prognosis Using Spatiotemporal Data
    Hachaj, Tomasz
    Hachaj, Pawel S.
    Ogiela, Marek R.
    [J]. IEEE 30TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA 2016), 2016, : 31 - 34
  • [34] A novel approach using incremental oversampling for data stream mining
    Anupama, N.
    Jena, Sudarson
    [J]. EVOLVING SYSTEMS, 2019, 10 (03) : 351 - 362
  • [35] Categorizing Text Data Using Deep Learning: A Novel Approach
    Roul, Rajendra Kumar
    Sahay, Sanjay Kumar
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 793 - 805
  • [36] A Novel Approach of Bulk Data Hiding using Text Steganography
    Shivani
    Yadav, Virendra Kumar
    Batham, Saumya
    [J]. 3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 1401 - 1410
  • [37] A novel ship trajectory reconstruction approach using AIS data
    Zhang, Liye
    Meng, Qiang
    Xiao, Zhe
    Fu, Xiuju
    [J]. OCEAN ENGINEERING, 2018, 159 : 165 - 174
  • [38] A Novel Approach for Clustering Data Streams Using Granularity Technique
    Kaneriya, Ankur
    Shukla, Madhu
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND APPLICATIONS (ICACEA), 2015, : 586 - 590
  • [39] A novel approach to using PCR-GBS in survey data
    Zitnick-Anderson, K.
    Simons, K.
    Pasche, J.
    [J]. PHYTOPATHOLOGY, 2015, 105 (11) : 160 - 160
  • [40] A novel approach for cancer diagnosis and prognosis using omics data
    Wang, Jin
    He, Peter
    [J]. CANCER BIOMARKERS, 2008, 4 (03) : 166 - 167