Some properties of circle maps with zero topological entropy

被引:2
|
作者
Yang, Yini [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
circle maps; non-separable pair; IN-pair; IT-pair; topological null; maximal pattern entropy;
D O I
10.1088/1361-6544/abd7c4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce three pairs in 'local entropy theory'. For a dynamical system (X, f), a pair < x, y > is an element of X x X is called an IN-pair (reps. an IT-pair) if for any neighborhoods U-1 and U-2 of x and y respectively, {U-1, U-2} has arbitrarily large finite independence sets (reps. {U-1, U-2} has an infinite independence set) where I subset of N is called an independence set of {A(1), A(2), . . . , A(k)} if for any non-empty finite subset J of I and S is an element of {1, 2, . . . , k}(J), boolean AND(i is an element of J) f(-i)A(S(i)) not equal empty set. For a circle map or interval map (M, f), a pair < x, y > is an element of M x M with x not equal y is called non-separable if there exists z is an element of M such that x, y is an element of omega(z, f) and < x, y > can not be separated. For a circle map f : S -> S with zero topological entropy, we show that a non-diagonal pair < x, y > is an element of S x S is non-separable if and only if it is an IN-pair if and only if it is an IT-pair. We introduce the maximal pattern entropy and recall that a null system is a system with zero maximal pattern entropy. We also show that if a circle map is topological null then the maximal pattern entropy of every open cover is of polynomial order.
引用
收藏
页码:2781 / 2799
页数:19
相关论文
共 50 条
  • [31] LI-YORKE CHAOS FOR DENDRITE MAPS WITH ZERO TOPOLOGICAL ENTROPY AND ω-LIMIT SETS
    Askri, Ghassen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 2957 - 2976
  • [32] A CHARACTERIZATION OF OMEGA-LIMIT SETS OF MAPS OF THE INTERVAL WITH ZERO TOPOLOGICAL-ENTROPY
    BRUCKNER, AM
    SMITAL, J
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 7 - 19
  • [33] Some properties of topological pressure of a semigroup of continuous maps
    Ma, Dongkui
    Liu, Shaohua
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (01): : 1 - 17
  • [34] Topological Persistence for Circle-Valued Maps
    Dan Burghelea
    Tamal K. Dey
    [J]. Discrete & Computational Geometry, 2013, 50 : 69 - 98
  • [35] Topological Persistence for Circle-Valued Maps
    Burghelea, Dan
    Dey, Tamal K.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) : 69 - 98
  • [36] Some properties on topological entropy of free semigroup action
    Tang, Jingru
    Li, Bing
    Cheng, Wen-Chiao
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2018, 33 (01): : 54 - 71
  • [37] Topological sequence entropy and topological dynamics of interval maps
    Canovas, Jose S.
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2007, 14 (01): : 47 - 54
  • [38] Topological sequence entropy and topological dynamics of tree maps
    Canovas, Jose S.
    Daghar, Aymen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 525 (01)
  • [39] Topological entropy of multivalued maps in topological spaces and hyperspaces
    Andres, Jan
    Ludvik, Pavel
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 160
  • [40] Topological entropy and adding machine maps
    Block, L
    Keesling, J
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (04): : 1103 - 1113