MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

被引:0
|
作者
Alonso Alvarez, Jose N. [1 ]
Fernandez Vilaboa, Jose M. [2 ]
Gonzalez Rodriguez, Ramon [3 ]
机构
[1] Univ Vigo, Dept Matemat, Campus Univ Lagoas Marcosende, E-36280 Vigo, Spain
[2] Univ Santiago de Compostela, Dept Matemat, E-15771 Santiago De Compostela, Spain
[3] Univ Vigo, Dept Matemat Aplicada 2, Campus Univ Lagoas Marcosende, E-36310 Vigo, Spain
关键词
Monoidal category; monoidal functor; Hopf (co)quasigroup; (strong) Galois object; Galois group; group-like element; invertible object; Picard group; MODULES;
D O I
10.4134/JKMS.j200069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic((H)Mod) congruent to Pic(C)circle plus G(H*) where Pic((H)Mod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H*) the group of group-like morphisms of the dual of H.
引用
收藏
页码:351 / 381
页数:31
相关论文
共 50 条
  • [21] STRONG HOPF MODULES FOR WEAK HOPF QUASIGROUPS
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    COLLOQUIUM MATHEMATICUM, 2017, 148 (02) : 231 - 246
  • [22] Adjointable monoidal functors and quantum groupoids
    Szlachanyi, K
    HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2005, 239 : 291 - 307
  • [23] Monoidal functors, graphs, and field algebras
    Kim, Namhoon
    JOURNAL OF ALGEBRA, 2015, 429 : 371 - 412
  • [24] The monoidal structure on strict polynomial functors
    Aquilino, Cosima
    Reischuk, Rebecca
    JOURNAL OF ALGEBRA, 2017, 485 : 213 - 229
  • [25] ON ENDOMORPHISM ALGEBRAS OF SEPARABLE MONOIDAL FUNCTORS
    Day, Brian
    Pastro, Craig
    THEORY AND APPLICATIONS OF CATEGORIES, 2009, 22 : 77 - 96
  • [26] THE SMASH COPRODUCT FOR HOPF QUASIGROUPS
    Jiao, Zhengming
    Wang, Yanling
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2012, 12 : 94 - 102
  • [27] Quasigroupoids and weak Hopf quasigroups
    Alonso Alvarez, J. N.
    Fernandez Vilaboa, J. M.
    Gonzalez Rodriguez, R.
    JOURNAL OF ALGEBRA, 2021, 568 : 408 - 436
  • [28] SOME FUNCTORS ON GROTHENDIECK EXACT SEQUENCES OF TYPE-I
    SHARMA, CL
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1976, 28 (01) : 212 - 221
  • [29] Avramov-Martsinkovsky Type Exact Sequences with Tor Functors
    Zhang, Chun Xia
    Liang, Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (11) : 1569 - 1577
  • [30] HOPF MODULES AND THE FUNDAMENTAL THEOREM FOR HOPF (CO)QUASIGROUPS
    Brzezinski, Tomasz
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 8 : 114 - 128