MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS

被引:0
|
作者
Alonso Alvarez, Jose N. [1 ]
Fernandez Vilaboa, Jose M. [2 ]
Gonzalez Rodriguez, Ramon [3 ]
机构
[1] Univ Vigo, Dept Matemat, Campus Univ Lagoas Marcosende, E-36280 Vigo, Spain
[2] Univ Santiago de Compostela, Dept Matemat, E-15771 Santiago De Compostela, Spain
[3] Univ Vigo, Dept Matemat Aplicada 2, Campus Univ Lagoas Marcosende, E-36310 Vigo, Spain
关键词
Monoidal category; monoidal functor; Hopf (co)quasigroup; (strong) Galois object; Galois group; group-like element; invertible object; Picard group; MODULES;
D O I
10.4134/JKMS.j200069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the notion of strong Galois H-progenerator object for a finite cocommutative Hopf quasigroup H in a symmetric monoidal category C. We prove that the set of isomorphism classes of strong Galois H-progenerator objects is a subgroup of the group of strong Galois H-objects introduced in [3]. Moreover, we show that strong Galois H-progenerator objects are preserved by strong symmetric monoidal functors and, as a consequence, we obtain an exact sequence involving the associated Galois groups. Finally, to the previous functors, if H is finite, we find exact sequences of Picard groups related with invertible left H-(quasi)modules and an isomorphism Pic((H)Mod) congruent to Pic(C)circle plus G(H*) where Pic((H)Mod) is the Picard group of the category of left H-modules, Pic(C) the Picard group of C, and G(H*) the group of group-like morphisms of the dual of H.
引用
收藏
页码:351 / 381
页数:31
相关论文
共 50 条