Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T cells

被引:85
|
作者
Mellanby, Richard J. [1 ]
Thomas, David [1 ]
Phillips, Jenny M. [1 ]
Cooke, Anne [1 ]
机构
[1] Univ Cambridge, Dept Pathol, Div Immunol, Cambridge CB2 1QP, England
基金
英国惠康基金;
关键词
CD25; diabetes; Foxp3; non-obese diabetic (NOD) mice; regulatory T cells;
D O I
10.1111/j.1365-2567.2007.02546.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The role of regulatory T cells (Tregs) in maintaining self tolerance has been intensively researched and there is a growing consensus that a decline in Treg function is an important step towards the development of autoimmune diseases, including diabetes. Although we show here that CD25(+) cells delay diabetes onset in non-obese diabetic (NOD) mice, we found, in contrast to previous reports, neither an age-related decline nor a decline following onset of diabetes in the frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells. Furthermore, we demonstrate that CD4(+) CD25(+) cells from both the spleen and pancreatic draining lymph nodes of diabetic and non-diabetic NOD mice are able to suppress the proliferation of CD4(+) CD25(-) cells to a similar extent in vitro. We also found that pretreatment of NOD mice with anti-CD25 antibody allowed T cells with a known reactivity to islet antigen to proliferate more in the pancreatic draining lymph nodes of NOD mice, regardless of age. In addition, we demonstrated that onset of diabetes in NOD.scid mice is faster when recipients are co-administered splenocytes from diabetic NOD donors and anti-CD25. Finally, we found that although diabetic CD4(+) CD25(+) T cells are not as suppressive in cotransfers with effectors into NOD.scid recipients, this may not indicate a decline in Treg function in diabetic mice because over 10% of CD4(+) CD25(+) T cells are non-Foxp3 and the phenotype of the CD25(-) contaminating population significantly differs in non-diabetic and diabetic mice. This work questions whether onset of diabetes in NOD mice is associated with a decline in Treg function.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 50 条
  • [21] Detection of CD4+ CD25+ Foxp3+ regulatory T cells in peripheral blood of patients with chronic autoimmune urticaria
    Sun, Ren-Shan
    JOURNAL OF DERMATOLOGY, 2010, 37 : 81 - 81
  • [22] Inhibition of phosphoantigen-mediated γδ T-cell proliferation by CD4+ CD25+ FoxP3+ regulatory T cells
    Kunzmann, Volker
    Kimmel, Brigitte
    Herrmann, Thomas
    Einsele, Hermann
    Wilhelm, Martin
    IMMUNOLOGY, 2009, 126 (02) : 256 - 267
  • [23] The Variation of Expression of CD4+ CD25+ Foxp3+ Regulatory T Cells in Patients with Helicobacter Pylori Infection and Eradication
    Chen, Tanzhou
    Jin, Ruifang
    Huang, Zhiming
    Hong, Wandong
    Chen, Zhoufeng
    Wang, Jinjin
    HEPATO-GASTROENTEROLOGY, 2010, 57 (99-100) : 430 - 435
  • [24] The Variation of Expression of CD4+ CD25+ Foxp3+ Regulatory T Cells in Patients with Helicobacter Pylori Infection and Eradication
    Chen, Tanzhou
    Jin, Ruifang
    Huang, Zhiming
    Hong, Wandong
    Chen, Zhoufeng
    Wang, Jingjing
    HEPATO-GASTROENTEROLOGY, 2014, 61 (130) : 507 - 511
  • [25] Generation of human CD4+ CD25+ FOXP3+ regulatory T cells secreting interferon-gamma from CD4+ CD25neg T cells.
    Venigalla, Ram Kumar chowdary
    Tretter, Theresa
    Lorenz, Hannes Martin
    ARTHRITIS AND RHEUMATISM, 2006, 54 (09): : S751 - S751
  • [26] Suppression of CD4+ Effector Responses by Naturally Occurring CD4+ CD25+ Foxp3+ Regulatory T Cells Contributes to Experimental Cerebral Malaria
    Blanc, Anne-Laurence
    Keswani, Tarun
    Gorgette, Olivier
    Bandeira, Antonio
    Malissen, Bernard
    Cazenave, Pierre-Andre
    Pied, Sylviane
    INFECTION AND IMMUNITY, 2016, 84 (01) : 329 - 338
  • [27] Adalimumab ameliorates OVA-induced airway inflammation in mice: Role of CD4+ CD25+ FOXP3+ regulatory T-cells
    Elsakkar, Mohamed G.
    Sharaki, Olla A.
    Abdallah, Dina M.
    Mostafa, Dalia K.
    Shekondali, Fadia T.
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 786 : 100 - 108
  • [28] Role of serum cd4+, cd25+, and foxp3+ cells' segmental and nonsegmental vitiligo
    Mohammed, Mohammed H.
    Raheem, Talal A. A.
    Farouk, Ahmed M.
    Mohammed, Shereen R.
    Gamal, Ahmed S.
    EGYPTIAN JOURNAL OF DERMATOLOGY AND VENEREOLOGY, 2024, 44 (03): : 164 - 168
  • [29] Impact of Immunosuppressants on the Therapeutic Efficacy of In Vitro-Expanded CD4+ CD25+ Foxp3+ Regulatory T Cells in Allotransplantation
    Lim, Dong-Gyun
    Koo, Sun-Kyung
    Park, Youn-Hee
    Kim, Youngji
    Kim, Hye-Mi
    Park, Chan-Sik
    Kim, Song-Cheol
    Han, Duck-Jong
    TRANSPLANTATION, 2010, 89 (08) : 928 - 936
  • [30] HUMAN INDUCED CD4+ CD25+ FOXP3+ REGULATORY T CELLS ARE SUPPRESSIVE IN VITRO, BUT FAIL TO SUPPRESS INFLAMMATION IN VIVO
    Vercoulen, Yvonne
    Guichelaar, Teun
    Meerding, Jenny
    Emmelot, Maarten
    Pingen, Marieke
    de Jager, Wilco
    Mutis, Tuna
    Martens, Anton
    Coffer, Paul
    Prakken, Berent
    ANNALS OF THE RHEUMATIC DISEASES, 2011, 70