Image Super-Resolution with Fast Approximate Convolutional Sparse Coding

被引:0
|
作者
Osendorfer, Christian [1 ]
Soyer, Hubert [1 ]
van der Smagt, Patrick [1 ]
机构
[1] Tech Univ Munich, Fak Informat, Lehrstuhl Robot & Echtzeitsyst, D-85748 Munich, Germany
关键词
Image Processing; Sparse Coding; Convolutional Neural Networks;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a computationally efficient architecture for image super-resolution that achieves state-of-the-art results on images with large spatial extend. Apart from utilizing Convolutional Neural Networks, our approach leverages recent advances in fast approximate inference for sparse coding. We empirically show that upsampling methods work much better on latent representations than in the original spatial domain. Our experiments indicate that the proposed architecture can serve as a basis for additional future improvements in image super-resolution.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 50 条
  • [41] Image Super-Resolution With Sparse Neighbor Embedding
    Gao, Xinbo
    Zhang, Kaibing
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (07) : 3194 - 3205
  • [42] Sparse Support Regression for Image Super-Resolution
    Jiang, Junjun
    Ma, Xiang
    Cai, Zhihua
    Hu, Ruimin
    [J]. IEEE PHOTONICS JOURNAL, 2015, 7 (05):
  • [43] Sparse Support Regression for Image Super-Resolution
    Jiang, Junjun
    Ma, Xiang
    Cai, Zhihua
    Hu, Ruimin
    [J]. IEEE Photonics Journal, 2015, 7 (05)
  • [44] Fast multi-spectral image super-resolution via sparse representation
    Mullah, Helal Uddin
    Deka, Bhabesh
    Prasad, A. V. V.
    [J]. IET IMAGE PROCESSING, 2020, 14 (12) : 2833 - 2844
  • [45] Fast single image super-resolution using sparse Gaussian process regression
    Wang, Haijun
    Gao, Xinbo
    Zhang, Kaibing
    Li, Jie
    [J]. SIGNAL PROCESSING, 2017, 134 : 52 - 62
  • [46] Using Sparse Coding in Super-resolution Reconstruction for PET
    Ren, X.
    Lee, S. -J.
    [J]. 2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,
  • [47] Combining sparse coding with structured output regression machine for single image super-resolution
    Tang, Yongliang
    Gong, Weiguo
    Yi, Qiane
    Li, Weihong
    [J]. INFORMATION SCIENCES, 2018, 430 : 577 - 598
  • [48] SINGLE IMAGE SUPER-RESOLUTION VIA BM3D SPARSE CODING
    Egiazarian, Karen
    Katkovnik, Vladimir
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2849 - 2853
  • [49] Fast low-dose Computed Tomography image Super-Resolution Reconstruction via Sparse coding and Random Forests
    Gu, Peijian
    Zheng, Lin
    [J]. PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1400 - 1403
  • [50] Single Image Super-Resolution via the Implementation of the Hardware-Friendly Sparse Coding
    Dong, Zhekang
    Lai, Chun Sing
    Xu, Zhao
    Qi, Donglian
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 8132 - 8137