Optimal shape of electrodes for high performance of inertial electrostatic confinement fusion

被引:0
|
作者
Tanaka, R [1 ]
Osawa, H [1 ]
Tabata, T [1 ]
Ishibashi, T [1 ]
Ohnishi, M [1 ]
机构
[1] Kansai Univ, Dept Elect Engn, Suita, Osaka 5648680, Japan
关键词
D O I
10.1109/FUSION.2003.1426648
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Inertial electrostatic confinement (IEC) fusion is a scheme of producing the ions between the anode and the hollow cathode in the concentric spheres by the glow discharge, accelerating the ions into the spherical center and giving rise to fusion reactions between the accelerated ions or between the accelerated ions and the background neutrals. A current feed-through is connected to the cathode through the anode to apply the negative high voltage. The existence of the feed-through breaks the spherical symmetry of the device and makes the lifetime of fast ions shorter since 50 % of the accelerated ions hit the feed-through and are lost. The optimal shapes of both of the cathode and the anode at the viewpoint of the long life of the fast ions are inquired by evaluating the lifetime of the ions by tracking the trajectories of the ions. Numerical results reveal that the lifetime of fast ions becomes twice by deforming a hemisphere of the anode pierced by the feed-through into an ellipsoid, although the shape of the cathode exerts less influence on their lives. The deformed anode reduces the heat load on the feed-through due to the ion bombardment and raises the neutron production rates due to longer life of the fast ions.
引用
收藏
页码:320 / 323
页数:4
相关论文
共 50 条
  • [41] D-3He fusion in an inertial electrostatic confinement device
    Ashley, RP
    Kulcinski, GL
    Santarius, JF
    Murali, SK
    Piefer, G
    18TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 1999, : 35 - 37
  • [42] Production of 13N via inertial electrostatic confinement fusion
    Weidner, JW
    Kulcinski, GL
    Santarius, JF
    Ashley, RP
    Pieter, G
    Cipiti, B
    Radel, R
    Murali, SK
    FUSION SCIENCE AND TECHNOLOGY, 2003, 44 (02) : 539 - 543
  • [43] Overview of University of Wisconsin inertial-electrostatic confinement fusion research
    Santarius, JF
    Kulcinski, GL
    Ashley, RP
    Boris, DR
    Cipiti, BB
    Murali, SK
    Piefer, GR
    Radel, RF
    Radel, TE
    Wehmeyer, AL
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1238 - 1244
  • [44] Development of an efficient pulsed magnet for improvement of inertial electrostatic confinement fusion
    Zaeem, A. Asle
    Ghafoorifard, H.
    Sadighzadeh, A.
    Ghorashi, A. H.
    JOURNAL OF INSTRUMENTATION, 2019, 14 (01)
  • [45] Study on discharge plasma in a cylindrical inertial electrostatic confinement fusion device
    Buzarbaruah, N.
    Dutta, N. J.
    Borgohain, D.
    Mohanty, S. R.
    Bailung, H.
    PHYSICS LETTERS A, 2017, 381 (30) : 2391 - 2396
  • [46] Particle-in-cell simulation of inertial electrostatic confinement fusion plasma
    Ohnishi, M
    Osawa, H
    Yoshikawa, K
    Masuda, K
    Yamamoto, Y
    FUSION TECHNOLOGY, 2001, 39 (03): : 1211 - 1216
  • [47] Effects of Displaced Grids on the Fusion Reactivity of an Inertial Electrostatic Confinement Device
    S. Krupakar Murali
    John F. Santarius
    Gerald L. Kulcinski
    Journal of Fusion Energy, 2010, 29 : 256 - 260
  • [48] Effect of the mounting membrane on shape in inertial confinement fusion implosions
    Nagel, S. R.
    Haan, S. W.
    Rygg, J. R.
    Barrios, M.
    Benedetti, L. R.
    Bradley, D. K.
    Field, J. E.
    Hammel, B. A.
    Izumi, N.
    Jones, O. S.
    Khan, S. F.
    Ma, T.
    Pak, A. E.
    Tommasini, R.
    Town, R. P. J.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [49] INERTIAL CONFINEMENT FUSION
    NUCKOLLS, JH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1089 - 1089
  • [50] INERTIAL CONFINEMENT FUSION
    NAKAI, S
    NUCLEAR FUSION, 1991, 31 (04) : 783 - 788