OBGAN: Minority oversampling near borderline with generative adversarial networks

被引:23
|
作者
Jo, Wonkeun [1 ]
Kim, Dongil [1 ]
机构
[1] Chungnam Natl Univ, Dept Comp Sci & Engn, 99 Daehak Ro, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Class imbalance problem; Oversampling; Generative learning; Deep learning; Neural networks; Generative adversarial networks; IMBALANCE;
D O I
10.1016/j.eswa.2022.116694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalance is a major issue that degrades the performance of machine learning classifiers in real-world problems. Oversampling methods have been widely used to overcome this issue by generating synthetic data from minority classes. However, conventional oversampling methods often focus only on the minority class and ignore relationships between the minority and majority classes. In this study, we propose an oversampling method called minority oversampling near the borderline with a generative adversarial network (OBGAN). To consider the minority and majority classes, OBGAN employs one independent discriminator for each class. Each discriminator competitively affects the generator to be trained to capture each region of the minority and majority classes. However, the sensitivity of the generator to the discriminator of the minority class is greater than that of the majority class. Hence, the generator learns the minority class with a focus near the borderline. In addition, the architecture and loss function of OBGAN are designed to avoid the mode collapse problem, which commonly occurs in GANs trained on relatively small datasets. Experimental results, involving 21 datasets and 6 benchmark methods, reveal that OBGAN exhibits excellent performance and stability.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Exploring generative adversarial networks and adversarial training
    Sajeeda A.
    Hossain B.M.M.
    Int. J. Cogn. Comp. Eng., (78-89): : 78 - 89
  • [22] Interpretable Generative Adversarial Networks
    Li, Chao
    Yao, Kelu
    Wang, Jin
    Diao, Boyu
    Xu, Yongjun
    Zhang, Quanshi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1280 - 1288
  • [23] Coevolution of Generative Adversarial Networks
    Costa, Victor
    Lourenco, Nuno
    Machado, Penousal
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 473 - 487
  • [24] Wasserstein Generative Adversarial Networks
    Arjovsky, Martin
    Chintala, Soumith
    Bottou, Leon
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [25] A survey of generative adversarial networks
    Zhu, Kongtao
    Liu, Xiwei
    Yang, Hongxue
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2768 - 2773
  • [26] Steganographic Generative Adversarial Networks
    Volkhonskiy, Denis
    Nazarov, Ivan
    Burnaev, Evgeny
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [27] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [28] Stacked Generative Adversarial Networks
    Huang, Xun
    Li, Yixuan
    Poursaeed, Omid
    Hopcroft, John
    Belongie, Serge
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1866 - 1875
  • [29] Graphical Generative Adversarial Networks
    Li, Chongxuan
    Welling, Max
    Zhu, Jun
    Zhang, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Triangle Generative Adversarial Networks
    Gan, Zhe
    Chen, Liqun
    Wang, Weiyao
    Pu, Yunchen
    Zhang, Yizhe
    Liu, Hao
    Li, Chunyuan
    Carin, Lawrence
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30