On the Parameterised Complexity of String Morphism Problems

被引:12
|
作者
Fernau, Henning [1 ]
Schmid, Markus L. [1 ]
Villanger, Yngve [2 ]
机构
[1] Univ Trier, Abt Informat Wissensch, Fachbereich 4, D-54296 Trier, Germany
[2] Univ Bergen, Dept Informat, N-5008 Bergen, Norway
关键词
String problems; String morphisms; Parameterised complexity; Exponential time hypothesis; Pattern languages; PATTERN; ALGORITHMS;
D O I
10.1007/s00224-015-9635-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a source string u and a target string w, to decide whether w can be obtained by applying a string morphism on u (i. e., uniformly replacing the symbols in u by strings) constitutes an -complete problem. We present a multivariate analysis of this problem (and its many variants) from the viewpoint of parameterised complexity theory, thereby pinning down the sources of its computational hardness. Our results show that most parameterised variants of the string morphism problem are fixed-parameter intractable and, apart from some very special cases, tractable variants can only be obtained by considering a large part of the input as parameters, namely the length of w and the number of different symbols in u.
引用
收藏
页码:24 / 51
页数:28
相关论文
共 50 条
  • [41] COMPLEXITY OF PATTERN MATCHING FOR A RANDOM STRING
    YAO, ACC
    SIAM JOURNAL ON COMPUTING, 1979, 8 (03) : 368 - 387
  • [42] <bold>A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms</bold>
    Corus, Dogan
    Lehre, Per Kristian
    Neumann, Frank
    Pourhassan, Mojgan
    EVOLUTIONARY COMPUTATION, 2016, 24 (01) : 183 - 203
  • [43] ON THE EXACT COMPLEXITY OF STRING MATCHING - LOWER BOUNDS
    GALIL, Z
    GIANCARLO, R
    SIAM JOURNAL ON COMPUTING, 1991, 20 (06) : 1008 - 1020
  • [44] String theory: Progress and problems
    Schwarz, John H.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (170): : 214 - 226
  • [45] Distinguishing string selection problems
    Lanctot, JK
    Li, M
    Ma, B
    Wang, SJ
    Zhang, LX
    INFORMATION AND COMPUTATION, 2003, 185 (01) : 41 - 55
  • [46] On the complexity of approximately matching a string to a directed graph
    Dondi, Riccardo
    Mauri, Giancarlo
    Zoppis, Italo
    INFORMATION AND COMPUTATION, 2022, 288
  • [47] Computational and Proof Complexity of Partial String Avoidability
    Itsykson, Dmitry
    Okhotin, Alexander
    Oparin, Vsevolod
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2021, 13 (01)
  • [48] On the construction of an antidictionary of a binary string with linear complexity
    Ota, Takahiro
    Morita, Hiroyoshi
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2343 - +
  • [49] String noninclusion optimization problems
    Rubinov, AR
    Timkovsky, VG
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1998, 11 (03) : 456 - 467
  • [50] Open problems in string cosmology
    Toumbas, Nicolaos
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2010, 58 (7-9): : 806 - 810