Contractible edges in k-connected graphs with minimum degree greater than or equal to left perpendicular 3k-1/2 right perpendicular

被引:1
|
作者
Ando, Kiyoshi [1 ]
机构
[1] Natl Inst Informat, Global Res Ctr Big Data Math, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
关键词
k-connected graph; k-contractible edge; Minimum degree;
D O I
10.1016/j.disc.2021.112416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a k-connected graph. An edge of G is said to be a k-contractible edge if the contraction of it results in a k-connected graph. Let E-c(G) denote the set of k-contractible edges of G. Let V(G) and delta(G) denote the set of vertices of G and the minimum degree of G, respectively. We prove that if k >= 3, vertical bar V(G)vertical bar >= 2k + 1 and delta(G) >= left perpendicular 3k-1/2 right perpendicular, then vertical bar E-c(G)vertical bar >= vertical bar V(G)vertical bar + left perpendicular 5k-5/2 right perpendicular - k. We also show that this result is sharp. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 8 条