Graphs of minimum degree at least left perpendicular d/2 right perpendicular and large enough maximum degree embed every tree with d vertices
被引:0
|
作者:
Hyde, Joseph
论文数: 0引用数: 0
h-index: 0
机构:
Univ Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8P 5C2, CanadaUniv Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8P 5C2, Canada
Hyde, Joseph
[1
]
Reed, Bruce
论文数: 0引用数: 0
h-index: 0
机构:
Univ Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8P 5C2, CanadaUniv Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8P 5C2, Canada
Reed, Bruce
[1
]
机构:
[1] Univ Victoria, Math & Stat, David Turpin Bldg, Victoria, BC V8P 5C2, Canada
Tree embedding;
minimum degree;
maximum degree;
ERDOS-SOS CONJECTURE;
D O I:
10.1016/j.procs.2023.08.263
中图分类号:
TP31 [计算机软件];
学科分类号:
081202 ;
0835 ;
摘要:
For d is an element of N, we show that there exists a function f(d) such that every graph G with Delta(G) >= f(d) and delta(G) >= left perpendicular d/2 right perpendicular contains every tree on d vertices as a subgraph. (C) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
机构:
Natl Inst Informat, Global Res Ctr Big Data Math, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, JapanNatl Inst Informat, Global Res Ctr Big Data Math, Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan