Modeling Dinophysis in Western Andalucia using a autoregressive hidden Markov model

被引:0
|
作者
Aron, Jordan [1 ]
Albert, Paul S. [1 ]
Gribble, Matthew O. [2 ]
机构
[1] NCI, Biostat Branch, Div Canc & Epidemiol, Rockville, MD 20850 USA
[2] Univ Alabama Birmingham, Sch Publ Hlth, Dept Epidemiol, Birmingham, AL 35294 USA
关键词
Autoregressive; EM algorithm; Harmful algal bloom; Missing data; Toxins; OKADAIC ACID; BLOOMS;
D O I
10.1007/s10651-022-00534-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dinophysis spp. can produce diarrhetic shellfish toxins (DST) including okadaic acid and dinophysistoxins, and some strains can also produce non-diarrheic pectenotoxins. Although DSTs are of human health concern and have motivated environmental monitoring programs in many locations, these monitoring programs often have temporal data gaps (e.g., days without measurements). This paper presents a model for the historical time-series, on a daily basis, of DST-producing toxigenic Dinophysis in 8 monitored locations in western Andalucia over 2015-2020, incorporating measurements of algae counts and DST levels. We fitted a bivariate hidden Markov Model (HMM) incorporating an autoregressive correlation among the observed DST measurements to account for environmental persistence of DST. We then reconstruct the maximum-likelihood profile of algae presence in the water column at daily intervals using the Viterbi algorithm. Using historical monitoring data from Andalucia, the model estimated that potentially toxigenic Dinophysis algae is present at greater than or equal to 250 cells/L between< 1% and>10% of the year depending on the site and year. The historical time-series reconstruction enabled by this method may facilitate future investigations into temporal dynamics of toxigenic Dinophysis blooms.
引用
收藏
页码:557 / 585
页数:29
相关论文
共 50 条
  • [1] Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model
    Jordan Aron
    Paul S. Albert
    Matthew O. Gribble
    [J]. Environmental and Ecological Statistics, 2022, 29 : 557 - 585
  • [2] Robust Visual Tracking using Autoregressive Hidden Markov Model
    Park, Dong Woo
    Kwon, Junseok
    Lee, Kyoung Mu
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1964 - 1971
  • [3] Autoregressive Hidden Markov Model and the Speech Signal
    Bryan, Jacob D.
    Levinson, Stephen E.
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2015, 2015, 61 : 328 - 333
  • [4] Classification of Heart Sound Signals Using Autoregressive Model and Hidden Markov Model
    Sh-Hussain, Hadrina
    Mohamad, M. M.
    Zahilah, Raja
    Ting, Chee-Ming
    Ismail, Kamarulafizam
    Numanl, Fuad
    Hussain, Hadri
    Rasul, Syed
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (04) : 755 - 763
  • [5] Revisiting autoregressive hidden Markov modeling of speech signals
    Ephraim, Y
    Roberts, WJJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (02) : 166 - 169
  • [6] Second-order autoregressive Hidden Markov Model
    Zuanetti, Daiane Aparecida
    Milan, Luis Aparecido
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (03) : 653 - 665
  • [7] Compressive Sensing for Autoregressive Hidden Markov Model Signal
    Wu, Ji
    Liang, Qilian
    Zhou, Zheng
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, 2010, 6221 : 360 - +
  • [8] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhao, Zhiguo
    Wang, Yeqin
    Feng, Mengqi
    Peng, Guangqin
    Liu, Jinguo
    Jason, Beth
    Tao, Yukai
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 2403 - 2416
  • [9] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhiguo Zhao
    Yeqin Wang
    Mengqi Feng
    Guangqin Peng
    Jinguo Liu
    Beth Jason
    Yukai Tao
    [J]. Wireless Personal Communications, 2018, 102 : 2403 - 2416
  • [10] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83