Compressive Sensing for Autoregressive Hidden Markov Model Signal

被引:0
|
作者
Wu, Ji [1 ]
Liang, Qilian [1 ]
Zhou, Zheng [2 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
[2] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
美国国家科学基金会;
关键词
compressive sensing; coefficient estimation; hidden markov model; RECOVERY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cornpressive sensing(CS) is an emerging filed based on the revelation that a small collection of linear projections of a sparse signal contains enough information for stable, sub-Nyquist signal acquisition. One challenging problem in compressive sensing is that it is difficult to represent signal in sparse basis, which makes this algorithm sometimes impractical. In this paper, we can setup a new standard compressive sensing problem for autoregressive hidden markov signal by utilizing the original observation vector and the autoregressive coefficients.
引用
收藏
页码:360 / +
页数:2
相关论文
共 50 条
  • [1] Autoregressive Hidden Markov Model and the Speech Signal
    Bryan, Jacob D.
    Levinson, Stephen E.
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2015, 2015, 61 : 328 - 333
  • [2] Compressive Sensing Image Reconstruction using Universal Hidden Markov Tree Model
    Yang, Xiuping
    Xu, Pingping
    Chu, Hongyun
    [J]. 2013 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2013), 2013,
  • [3] Second-order autoregressive Hidden Markov Model
    Zuanetti, Daiane Aparecida
    Milan, Luis Aparecido
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2017, 31 (03) : 653 - 665
  • [4] Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model
    Duarte, Marco F.
    Wakin, Michael B.
    Baraniuk, Richard G.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 5137 - +
  • [5] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhao, Zhiguo
    Wang, Yeqin
    Feng, Mengqi
    Peng, Guangqin
    Liu, Jinguo
    Jason, Beth
    Tao, Yukai
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2018, 102 (04) : 2403 - 2416
  • [6] Autoregressive State Prediction Model Based on Hidden Markov and the Application
    Zhiguo Zhao
    Yeqin Wang
    Mengqi Feng
    Guangqin Peng
    Jinguo Liu
    Beth Jason
    Yukai Tao
    [J]. Wireless Personal Communications, 2018, 102 : 2403 - 2416
  • [7] Robust Visual Tracking using Autoregressive Hidden Markov Model
    Park, Dong Woo
    Kwon, Junseok
    Lee, Kyoung Mu
    [J]. 2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 1964 - 1971
  • [8] Classification of Heart Sound Signals Using Autoregressive Model and Hidden Markov Model
    Sh-Hussain, Hadrina
    Mohamad, M. M.
    Zahilah, Raja
    Ting, Chee-Ming
    Ismail, Kamarulafizam
    Numanl, Fuad
    Hussain, Hadri
    Rasul, Syed
    [J]. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (04) : 755 - 763
  • [9] Modeling Dinophysis in Western Andalucia using a autoregressive hidden Markov model
    Aron, Jordan
    Albert, Paul S.
    Gribble, Matthew O.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2022, 29 (03) : 557 - 585
  • [10] Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model
    Jordan Aron
    Paul S. Albert
    Matthew O. Gribble
    [J]. Environmental and Ecological Statistics, 2022, 29 : 557 - 585