Learning structure and parameters of Stochastic Logic Programs

被引:0
|
作者
Muggleton, S [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
来源
INDUCTIVE LOGIC PROGRAMMING | 2003年 / 2583卷
关键词
Stochastic logic programs; generalisation; analytical methods; numerical methods;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous papers have studied learning of Stochastic Logic Programs (SLPs) either as a purely parametric estimation problem or separated structure learning and parameter estimation into separate phases. In this paper we consider ways in which both the structure and the parameters of an SLP can be learned simultaneously. The paper assumes an ILP algorithm, such as Progol or FOIL, in which clauses are constructed independently. We derive analytical and numerical methods for efficient computation of the optimal probability parameters for a single clause choice within such a search.
引用
收藏
页码:198 / 206
页数:9
相关论文
共 50 条
  • [21] A framework for incremental learning of logic programs
    Rao, MRKK
    THEORETICAL COMPUTER SCIENCE, 1997, 185 (01) : 191 - 213
  • [22] Learning logic programs with annotated disjunctions
    Riguzzi, F
    INDUCTIVE LOGIC PROGRAMMING, PROCEEDINGS, 2004, 3194 : 270 - 287
  • [23] Protein fold discovery using stochastic logic programs
    Chen, Jianzhong
    Kelley, Lawrence
    Muggleton, Stephen
    Sternberg, Michael
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 4911 LNAI : 244 - 262
  • [24] LOGIC STRUCTURE FOR EXPERIMENTAL DEVELOPMENT PROGRAMS
    RUTHERFO.JR
    CHEMICAL TECHNOLOGY, 1971, (MAR): : 159 - &
  • [25] Structure Analysis of Logic Control Programs
    Nakamura, Satoshi
    Fujimoto, Yasutaka
    IECON 2004: 30TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOL 3, 2004, : 2588 - 2593
  • [26] Bandit-based Monte-Carlo structure learning of probabilistic logic programs
    Di Mauro, Nicola
    Bellodi, Elena
    Riguzzi, Fabrizio
    MACHINE LEARNING, 2015, 100 (01) : 127 - 156
  • [27] Bandit-based Monte-Carlo structure learning of probabilistic logic programs
    Nicola Di Mauro
    Elena Bellodi
    Fabrizio Riguzzi
    Machine Learning, 2015, 100 : 127 - 156
  • [28] Testing the structure of multistage stochastic programs
    Dupacova, Jitka
    Bertocchi, Marida
    Moriggia, Vittorio
    COMPUTATIONAL MANAGEMENT SCIENCE, 2009, 6 (02) : 161 - 185
  • [29] Testing the structure of multistage stochastic programs
    Jitka Dupačová
    Marida Bertocchi
    Vittorio Moriggia
    Computational Management Science, 2009, 6 (2) : 161 - 185
  • [30] DISCRETIZATION OF STOCHASTIC PROGRAMS AND PROBLEM STRUCTURE
    MARTI, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (03): : T105 - T108