A stochastic predator-prey model for integrated pest management

被引:5
|
作者
Huang, Lidong [1 ,2 ]
Chen, Xingshu [1 ]
Tan, Xuewen [2 ]
Chen, Xiaochou [3 ]
Liu, Xinzhi [4 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Sichuan, Peoples R China
[2] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming, Yunnan, Peoples R China
[3] Yunnan Minzu Univ, Key Lab IOT Applicat Technol Univ Yunnan Prov, Kunming, Yunnan, Peoples R China
[4] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Integrated pest management; Predator-prey model; Pest extinction; Impulsive effects;
D O I
10.1186/s13662-019-2291-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a stochastic predator-prey model for integrated pest management. It shows that the system has a positive solution that exists globally. The long time behavior of the system is investigated, and a condition for the pest to go extinct is given. Then the numerical simulations are carried out to illustrate our theoretical results and facilitate their interpretation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The Complex Dynamics of a Stochastic Predator-Prey Model
    Wang, Xixi
    Huang, Huilin
    Cai, Yongli
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [22] Paradox of Enrichment in a Stochastic Predator-Prey Model
    Alebraheem, Jawdat
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [23] Optimal Harvest of a Stochastic Predator-Prey Model
    Lv, Jingliang
    Wang, Ke
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [24] Optimal Harvest of a Stochastic Predator-Prey Model
    Jingliang Lv
    Ke Wang
    Advances in Difference Equations, 2011
  • [25] Periodicity and Permanence of a Discrete Impulsive Lotka-Volterra Predator-Prey Model Concerning Integrated Pest Management
    Tan, Chang
    Cao, Jun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [26] On a stochastic delayed predator-prey model with Levy jumps
    Liu, Meng
    Bai, Chuan Zhi
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 563 - 570
  • [27] Dynamics of a stochastic predator-prey model with mutual interference
    Wang, Kai
    Zhu, Yanling
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (03)
  • [28] Dynamical Analysis of Stochastic Predator-prey Model with Scavenger
    Prasad, S. N.
    Kumar, I
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 73 - 90
  • [29] Optimal harvesting policy for a stochastic predator-prey model
    Liu, Meng
    Bai, Chuanzhi
    APPLIED MATHEMATICS LETTERS, 2014, 34 : 22 - 26
  • [30] A NON-AUTONOMOUS STOCHASTIC PREDATOR-PREY MODEL
    Buonocore, Aniello
    Caputo, Luigia
    Pirozzi, Enrica
    Nobile, Amelia G.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2014, 11 (02) : 167 - 188