Count of eigenvalues in the generalized eigenvalue problem

被引:37
|
作者
Chugunova, Marina [1 ]
Pelinovsky, Dmitry [1 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
关键词
SOLITARY WAVES; ASYMPTOTIC STABILITY; SPECTRAL STABILITY; STABLE MANIFOLDS; SOLITONS; EQUATIONS; VORTICES;
D O I
10.1063/1.3406252
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study isolated and embedded eigenvalues in the generalized eigenvalue problem defined by two self-adjoint operators with a positive essential spectrum and a finite number of isolated eigenvalues. The generalized eigenvalue problem determines the spectral stability of nonlinear waves in infinite-dimensional Hamiltonian systems. The theory is based on Pontryagin's invariant subspace theorem and extends beyond the scope of earlier papers of Pontryagin, Krein, Grillakis, and others. Our main results are (i) the number of unstable and potentially unstable eigenvalues equals the number of negative eigenvalues of the self-adjoint operators, (ii) the total number of isolated eigenvalues of the generalized eigenvalue problem is bounded from above by the total number of isolated eigenvalues of the self-adjoint operators, and (iii) the quadratic forms defined by the two self-adjoint operators are strictly positive on the subspace related to the continuous spectrum of the generalized eigenvalue problem. Applications to the localized solutions of the nonlinear Schrodinger equations are developed from the general theory. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3406252]
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Continuous minimizer of eigenvalues for eigenvalue problem with equimeasurable weights
    Zhiyuan Wen
    Lijuan Zhou
    Boundary Value Problems, 2018
  • [22] Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem
    Xu, Xiao-Chuan
    Yang, Chuan-Fu
    Buterin, Sergey A.
    Yurko, Vjacheslav A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (38) : 1 - 15
  • [23] Sensitivity analysis of multiple eigenvalues of nonsymmetric generalized eigenvalue problems
    College of Science, East China University of Science and Technology, Shanghai 200237, China
    不详
    Shanghai Ligong Daxue Xuebao, 2006, 1 (49-53):
  • [24] Perturbation of eigenvalues in the generalized Rayleigh problem
    L. D. Akulenko
    D. V. Georgievskiĭ
    S. V. Nesterov
    A. S. Promyslova
    Doklady Physics, 2008, 53 : 536 - 538
  • [25] Perturbation of Eigenvalues in the Generalized Rayleigh Problem
    Akulenko, L. D.
    Georgievskii, D. V.
    Nesterov, S. V.
    Promyslova, A. S.
    DOKLADY PHYSICS, 2008, 53 (10) : 536 - 538
  • [26] ASYMPTOTIC SOLUTIONS OF A GENERALIZED EIGENVALUE PROBLEM
    SHAMMA, SE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1973, 24 (01): : 131 - 134
  • [27] ONE GENERALIZED QUASILINEAR EIGENVALUE PROBLEM
    MAKHMUDOV, AP
    DOKLADY AKADEMII NAUK SSSR, 1978, 243 (01): : 33 - 36
  • [28] A new algorithm for the generalized eigenvalue problem
    Huper, K
    Helmke, U
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 35 - 38
  • [29] A Note on Sparse Generalized Eigenvalue Problem
    Cai, Yunfeng
    Fang, Guanhua
    Li, Ping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] REDUCTION OF GENERALIZED RPA EIGENVALUE PROBLEM
    ULLAH, N
    GUPTA, KK
    JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (08) : 1163 - &