Neural network for aerosol retrieval from hyperspectral imagery

被引:8
|
作者
Mauceri, Steffen [1 ,2 ]
Kindel, Bruce [2 ]
Massie, Steven [2 ]
Pilewskie, Peter [1 ,2 ]
机构
[1] CU Boulder, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[2] Lab Atmospher & Space Phys, Boulder, CO 80303 USA
关键词
OPTICAL DEPTH; RADIATIVE-TRANSFER; AIR-POLLUTION; MODIS; LAND; INSTRUMENT; DESIGN; SPECTROMETER; ALGORITHM; OCEAN;
D O I
10.5194/amt-12-6017-2019
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We retrieve aerosol optical thickness (AOT) independently for brown carbon, dust and sulfate from hyperspectral image data. The model, a neural network, is trained on atmospheric radiative transfer calculations from MOD-TRAN 6.0 with varying aerosol concentration and type, surface albedo, water vapor, and viewing geometries. From a set of test radiative transfer calculations, we are able to retrieve AOT with a standard error of better than +/- 0:05. No a priori information on the surface albedo or atmospheric state is necessary for our model. We apply the model to AVIRIS-NG imagery from a recent campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types.
引用
收藏
页码:6017 / 6036
页数:20
相关论文
共 50 条
  • [31] Significant wave height retrieval from Sentinel-1 SAR imagery by convolutional neural network
    Sihan Xue
    Xupu Geng
    Xiao-Hai Yan
    Ting Xie
    Qiuze Yu
    [J]. Journal of Oceanography, 2020, 76 : 465 - 477
  • [32] Retrieval of oceanic constituents from MERIS imagery over Case II waters with Artificial Neural Network
    Zhang, Tinglu
    Fischer, Juergen
    He, Mingxia
    [J]. DRAGON PROGRAMME MID-TERM RESULTS, PROCEEDINGS, 2006, 611 : 97 - +
  • [33] Retrieval of Aerosol Single-Scattering Albedo from MODIS Data Using an Artificial Neural Network
    Qi, Lin
    Liu, Ronggao
    Liu, Yang
    [J]. REMOTE SENSING, 2022, 14 (24)
  • [34] Retrieval of aerosol optical depth and single scattering albedo from AMTIS imagery
    He, LM
    Wang, H
    Yan, GJ
    Li, XW
    Wang, JD
    [J]. IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 2170 - 2172
  • [35] Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery
    Zhang, Caiyun
    Xie, Zhixiao
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 310 - 320
  • [36] A Convolutional Neural Network Classifier Identifies Tree Species in Mixed-Conifer Forest from Hyperspectral Imagery
    Fricker, Geoffrey A.
    Ventura, Jonathan D.
    Wolf, Jeffrey A.
    North, Malcolm P.
    Davis, Frank W.
    Franklin, Janet
    [J]. REMOTE SENSING, 2019, 11 (19)
  • [37] HTD-Net: A Deep Convolutional Neural Network for Target Detection in Hyperspectral Imagery
    Zhang, Gaigai
    Zhao, Shizhi
    Li, Wei
    Du, Qian
    Ran, Qiong
    Tao, Ran
    [J]. REMOTE SENSING, 2020, 12 (09)
  • [38] Neural Network Emulation of Synthetic Hyperspectral Sentinel-2-Like Imagery With Uncertainty
    Morata, Miguel
    Siegmann, Bastian
    Perez-Suay, Adrian
    Garcia-Soria, Jose Luis
    Rivera-Caicedo, Juan Pablo
    Verrelst, Jochem
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 762 - 772
  • [39] Habitual detection and measurement of human blood cells on hyperspectral imagery for convolutional neural network
    Devi, T. Arumuga Maria
    Thangaselvi, Paulraj
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 45 (01) : 1 - 12
  • [40] COASTAL CHARACTERIZATION FROM HYPERSPECTRAL IMAGERY: AN INTERCOMPARISON OF RETRIEVAL PROPERTIES FROM THREE COAST TYPES
    Bachmann, Charles M.
    Nichols, C. Reid
    Montes, Marcos J.
    Fusina, Robert A.
    Li, Rong-Rong
    Gross, Carl
    Fry, John
    Parrish, Chris
    Sellars, Jon
    White, Stephen A.
    Jones, Christopher A.
    Lee, Krista
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 138 - 141