Neural network for aerosol retrieval from hyperspectral imagery

被引:8
|
作者
Mauceri, Steffen [1 ,2 ]
Kindel, Bruce [2 ]
Massie, Steven [2 ]
Pilewskie, Peter [1 ,2 ]
机构
[1] CU Boulder, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[2] Lab Atmospher & Space Phys, Boulder, CO 80303 USA
关键词
OPTICAL DEPTH; RADIATIVE-TRANSFER; AIR-POLLUTION; MODIS; LAND; INSTRUMENT; DESIGN; SPECTROMETER; ALGORITHM; OCEAN;
D O I
10.5194/amt-12-6017-2019
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We retrieve aerosol optical thickness (AOT) independently for brown carbon, dust and sulfate from hyperspectral image data. The model, a neural network, is trained on atmospheric radiative transfer calculations from MOD-TRAN 6.0 with varying aerosol concentration and type, surface albedo, water vapor, and viewing geometries. From a set of test radiative transfer calculations, we are able to retrieve AOT with a standard error of better than +/- 0:05. No a priori information on the surface albedo or atmospheric state is necessary for our model. We apply the model to AVIRIS-NG imagery from a recent campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types.
引用
收藏
页码:6017 / 6036
页数:20
相关论文
共 50 条
  • [1] Neural network approach for aerosol retrieval
    Okada, Y
    Mukai, S
    Sano, I
    [J]. IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 1716 - 1718
  • [2] Evaluation of near-UV/blue Aerosol Optical Thickness Retrieval from Airborne Hyperspectral Imagery
    Seidel, Felix C.
    Nieke, Jens
    Schlaepfer, Daniel
    Itten, Klaus I.
    Bowles, Jeffrey H.
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2247 - +
  • [3] Hyperspectral Imagery Classification Based on Compressed Convolutional Neural Network
    Cao, Xianghai
    Ren, Meiru
    Zhao, Jing
    Li, Hui
    Jiao, Licheng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1583 - 1587
  • [4] Neural Network-based Band Selection on Hyperspectral Imagery
    Darling, Preston C.
    [J]. ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS III, 2021, 11746
  • [5] Chlorophyll content retrieval from hyperspectral remote sensing imagery
    Yang, Xiguang
    Yu, Ying
    Fan, Wenyi
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2015, 187 (07)
  • [6] Bathymetric retrieval from manifold coordinate representations of hyperspectral imagery
    Bachmann, Charles M.
    Ainsworth, Thomas L.
    Fusina, Robert A.
    Montes, Marcos J.
    Bowles, Jeffrey H.
    Korwan, Daniel R.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 1548 - 1551
  • [7] Chlorophyll content retrieval from hyperspectral remote sensing imagery
    Xiguang Yang
    Ying Yu
    Wenyi Fan
    [J]. Environmental Monitoring and Assessment, 2015, 187
  • [8] Retrieval of microphysical and optical properties in aerosol plumes with hyperspectral imagery: L-APOM method
    Alakian, Alexandre
    Marion, Rodolphe
    Briottet, Xavier
    [J]. REMOTE SENSING OF ENVIRONMENT, 2009, 113 (04) : 781 - 793
  • [9] STACK PLUME AEROSOL RETRIEVAL FROM PRISMA HYPERSPECTRAL IMAGES
    Calassou, Gabriel
    Foucher, Pierre-Yves
    Leon, Jean-Francois
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6622 - 6625
  • [10] Precipitable Water Vapor Retrieval Using Neural Network from Infrared Hyperspectral Soundings
    Zhang, Shenglan
    Xu, Lisheng
    Ding, Jilie
    Liu, Hailei
    Deng, Xiaobo
    [J]. ADVANCED MATERIALS IN MICROWAVES AND OPTICS, 2012, 500 : 390 - 396