From the Stone-von Neumann theorem to the equivariant Brauer group and beyond

被引:0
|
作者
Williams, DP [1 ]
机构
[1] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a survey of recent work on the equivariant Brauer group. It is an expanded version of a talk given at the January 2003 AMS special session entitled "Operator Algebras, Quantization, and Noncommutative Geometry: A Centennial Celebration in Honor of J. V. Neumann and M. H. Stone".
引用
收藏
页码:401 / 422
页数:22
相关论文
共 18 条
  • [1] THE MODULAR STONE-VON NEUMANN THEOREM
    Hall, Lucas
    Huang, Leonard
    Quigg, John
    JOURNAL OF OPERATOR THEORY, 2023, 89 (02) : 571 - 586
  • [2] A selective history of the Stone-von Neumann theorem
    Rosenberg, J
    OPERATOR ALGEBRAS, QUANTIZATION, AND NONCOMMUTATIVE GEOMETRY: A CENTENNIAL CELEBRATION HONORING JOHN VON NEUMANN AND MARSHALL H. STONE, 2004, 365 : 331 - 353
  • [3] An easy proof of the Stone-von Neumann-Mackey Theorem
    Prasad, Amritanshu
    EXPOSITIONES MATHEMATICAE, 2011, 29 (01) : 110 - 118
  • [4] A generalization of the Stone-von Neumann theorem to nonregular representations of the CCR-algebra
    Cavallaro, S
    Morchio, G
    Strocchi, F
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 47 (04) : 307 - 320
  • [5] A Stone-von Neumann equivalence of categories for smooth representations of the Heisenberg group
    Gomez, Raul
    Gourevitch, Dmitry
    Sahi, Siddhartha
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2025, 36 (02): : 450 - 481
  • [6] The Covariant Stone-von Neumann Theorem for Actions of Abelian Groups on C*-Algebras of Compact Operators
    Huang, Leonard
    Ismert, Lara
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 117 - 147
  • [7] A THEOREM OF STONE AND VON NEUMANN
    MACKEY, GW
    DUKE MATHEMATICAL JOURNAL, 1949, 16 (02) : 313 - 326
  • [8] Coherent state transforms and the Mackey-Stone-Von Neumann theorem
    Kirwin, William D.
    Mourao, Jose M.
    Nunes, Joao P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10)
  • [9] The covariant Stone–von Neumann theorem for locally compact quantum groupsThe covariant Stone–von Neumann theorem for locally compact...L. Hall et al.
    Lucas Hall
    Leonard Huang
    Jacek Krajczok
    Mariusz Tobolski
    Letters in Mathematical Physics, 115 (1)
  • [10] From von Neumann to Wigner and beyond
    Ben-Benjamin, J. S.
    Cohen, L.
    Scully, M. O.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 227 (15-16): : 2171 - 2182