A generalization of the Stone-von Neumann theorem to nonregular representations of the CCR-algebra

被引:20
|
作者
Cavallaro, S [1 ]
Morchio, G
Strocchi, F
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Pisa, Dipartimento Fis, Pisa, Italy
[3] Ist Nazl Fis Nucl, Pisa, Italy
[4] Scuola Normale Super Pisa, Pisa, Italy
关键词
Stone-von Neumann theorem; Weyl algebra; measurable representations;
D O I
10.1023/A:1007599222651
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a classification, up to unitary equivalence, of the representations of the C*-algebra of the Canonical Commutation Relations which generalizes the classical Stone-von Neumann Theorem to the case of representations which are strongly measurable, but not necessarily strongly continuous. The classification includes all the (nonregular) representations which have been considered in physical models.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 28 条
  • [1] A Generalization of the Stone–Von Neumann Theorem to Nonregular Representations of the CCR-Algebra
    S. Cavallaro
    G. Morchio
    F. Strocchi
    Letters in Mathematical Physics, 1999, 47 : 307 - 320
  • [2] THE MODULAR STONE-VON NEUMANN THEOREM
    Hall, Lucas
    Huang, Leonard
    Quigg, John
    JOURNAL OF OPERATOR THEORY, 2023, 89 (02) : 571 - 586
  • [3] A selective history of the Stone-von Neumann theorem
    Rosenberg, J
    OPERATOR ALGEBRAS, QUANTIZATION, AND NONCOMMUTATIVE GEOMETRY: A CENTENNIAL CELEBRATION HONORING JOHN VON NEUMANN AND MARSHALL H. STONE, 2004, 365 : 331 - 353
  • [4] An easy proof of the Stone-von Neumann-Mackey Theorem
    Prasad, Amritanshu
    EXPOSITIONES MATHEMATICAE, 2011, 29 (01) : 110 - 118
  • [5] A Stone-von Neumann equivalence of categories for smooth representations of the Heisenberg group
    Gomez, Raul
    Gourevitch, Dmitry
    Sahi, Siddhartha
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2025, 36 (02): : 450 - 481
  • [6] From the Stone-von Neumann theorem to the equivariant Brauer group and beyond
    Williams, DP
    OPERATOR ALGEBRAS, QUANTIZATION, AND NONCOMMUTATIVE GEOMETRY: A CENTENNIAL CELEBRATION HONORING JOHN VON NEUMANN AND MARSHALL H. STONE, 2004, 365 : 401 - 422
  • [7] The Covariant Stone-von Neumann Theorem for Actions of Abelian Groups on C*-Algebras of Compact Operators
    Huang, Leonard
    Ismert, Lara
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (01) : 117 - 147
  • [8] GENERALIZATION OF VON NEUMANN THEOREM
    GUIVARCH, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (18): : 1020 - &
  • [9] On a generalization of a Theorem of von Neumann
    Hairer, E
    Wanner, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 95 - 98
  • [10] A generalization of a theorem of von Neumann
    Eshkaftaki, Ali Bayati
    AEQUATIONES MATHEMATICAE, 2025, 99 (01) : 61 - 70