Comparative study of recommender system approaches and movie recommendation using collaborative filtering

被引:16
|
作者
Anwar, Taushif [1 ]
Uma, V. [1 ]
机构
[1] Pondicherry Univ, Dept Comp Sci, Pondicherry 605014, India
关键词
Recommender system; Knowledge based; Context based; Hybrid; Content based; Collaborative filtering; Intelligent; Demographic; OF-THE-ART; USER;
D O I
10.1007/s13198-021-01087-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The increasing demand for personalized information has resulted in the development of the Recommender System (RS). RS has been widely utilized and broadly studied to suggest the interests of users and make an appropriate recommendation. This paper gives an overview of several types of recommendation approaches based on user preferences, ratings, domain knowledge, users demographic data, users context and also lists the advantages and disadvantages of each RS approach. In this paper, we also proposed the movie recommendation based on collaborative filtering and singular value decomposition plus-plus (SVD++). The proposed approach is compared with well-known machine learning approaches namely k nearest neighbor (K-NN), singular value decomposition (SVD) and Co-clustering. The proposed approach is experimentally verified using MovieLens 100 K datasets and error of the RS is measured using Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The result shows that the proposed approach gives a lesser error rate with RMSE (0.9201) and MAE (0.7219). This approach also overcomes cold-start, data sparsity problems and provides them relevant items and services.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [41] Using Collaborative Filtering Algorithms Combined with Doc2Vec for Movie Recommendation
    Liu, Gaojun
    Wu, Xingyu
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 1461 - 1464
  • [42] News recommendation system using collaborative filtering method
    Wahana, A.
    Maylawati, D. S.
    Wiwaha, B. A.
    Ramdhani, M. A.
    Amin, A. S.
    4TH ANNUAL APPLIED SCIENCE AND ENGINEERING CONFERENCE, 2019, 2019, 1402
  • [43] Enhanced Content-based Filtering using Diverse Collaborative Prediction for Movie Recommendation
    Uddin, Mohammed Nazim
    Shrestha, Jenu
    Jo, Geun-Sik
    2009 FIRST ASIAN CONFERENCE ON INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2009, : 132 - +
  • [44] Gene-based Collaborative Filtering using recommender system
    Hu, Jinyu
    Sharma, Sugam
    Gao, Zhiwei
    Chang, Victor
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 65 : 332 - 341
  • [45] A Comprehensive Collaborative Filtering Approach using Autoencoder in Recommender System
    Hasan, Mahamudul
    Hasan, Md Tasdikul
    Reza, Md Selim
    Akonda, Md Nirab
    Khan, M. Saddam Hossain
    Uddin, Md Mohsin
    ICCAI '19 - PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND ARTIFICIAL INTELLIGENCE, 2019, : 185 - 189
  • [46] A Hybrid Approach using Collaborative filtering and Content based Filtering for Recommender System
    Geetha, G.
    Safa, M.
    Fancy, C.
    Saranya, D.
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [47] Research Paper Recommender System Evaluation Using Collaborative Filtering
    Haruna, Khalid
    Ismail, Maizatul Akmar
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [48] Item-Based Collaborative Filtering with Attribute Correlation: A Case Study on Movie Recommendation
    Pirasteh, Parivash
    Jung, Jason J.
    Hwang, Dosam
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, 2014, 8398 : 245 - 252
  • [49] A study of collaborative filtering recommender system based on cloud model
    Hwang, Chein-Shung
    Kao, Yu-Cheng
    ICIC Express Letters, 2012, 6 (06): : 1495 - 1500
  • [50] Scalable Collaborative Filtering Approaches for Large Recommender Systems
    Takacs, Gabor
    Pilaszy, Istvan
    Nemeth, Bottyan
    Tikk, Domonkos
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 623 - 656