Blow-up set for a semilinear heat equation with small diffusion

被引:16
|
作者
Fujishima, Yohei [1 ]
Ishige, Kazuhiro [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
LARGE INITIAL DATA; LIFE-SPAN; PARABOLIC EQUATION; POSITIVE SOLUTIONS; CAUCHY-PROBLEM; BEHAVIOR; PROFILE; DOMAINS; TIME;
D O I
10.1016/j.jde.2010.03.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the blow-up problem for a semilinear heat equation, {partial derivative(t)u = epsilon Delta u + u(p) in Omega x (0, T), u(x, t) = 0 on partial derivative Omega x (0, T) if partial derivative Omega not equal phi, u(x, 0) = phi(epsilon)(x) >= 0 in Omega, where Omega is a domain in R-N, N >= 1, epsilon > 0, p > 1, and T > 0. In this paper, under suitable assumptions on {phi(epsilon)}, we prove that, if the family of the solutions {u(epsilon)} kid satisfies a uniform type I blow-up estimate with respect to epsilon, then the solution u(epsilon) blows up only near the maximum points of the initial datum phi(epsilon) for any sufficiently small epsilon > 0. This is proved without any conditions on the exponent p and the domain Omega, such as (N - 2)p < N + 2 and the convexity of the domain Omega. (C) 2010 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1056 / 1077
页数:22
相关论文
共 50 条
  • [21] Type II blow-up for a semilinear heat equation with potential
    Jiang, Gui-Chun
    Wang, Ruo-Yi
    Wang, Yu-Xuan
    Zheng, Gao-Feng
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 659 - 673
  • [22] ON A BLOW-UP SET FOR NONLINEAR REACTION DIFFUSION EQUATION
    GALAKTIONOV, VA
    DOKLADY AKADEMII NAUK SSSR, 1991, 317 (02): : 280 - 284
  • [23] Type II blow-up for a semilinear heat equation with potential
    Gui-Chun Jiang
    Ruo-Yi Wang
    Yu-Xuan Wang
    Gao-Feng Zheng
    Monatshefte für Mathematik, 2021, 195 : 659 - 673
  • [24] BLOW-UP OF POSITIVE SOLUTIONS OF A SEMILINEAR HEAT-EQUATION
    WANG, MX
    ACTA MATHEMATICA SCIENTIA, 1993, 13 (01) : 33 - 38
  • [25] Continuity of the blow-up profile with respect to initial data and to the blow-up point for a semilinear heat equation
    Khenissy, S.
    Rebai, Y.
    Zaag, H.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01): : 1 - 26
  • [26] Refined Regularity of the Blow-Up Set Linked to Refined Asymptotic Behavior for the Semilinear Heat Equation
    Ghoul, Tej-Eddine
    Van Tien Nguyen
    Zaag, Hatem
    ADVANCED NONLINEAR STUDIES, 2017, 17 (01) : 31 - 54
  • [27] ON THE EFFECT OF HIGHER ORDER DERIVATIVES OF INITIAL DATA ON THE BLOW-UP SET FOR A SEMILINEAR HEAT EQUATION
    Fujishima, Yohei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (02) : 449 - 475
  • [28] Regularity of the blow-up set and singular behavior for semilinear heat equations
    Zaag, H
    MATHEMATICS AND MATHEMATICS EDUCATION, 2002, : 337 - 347
  • [29] LP-ENERGY AND BLOW-UP FOR A SEMILINEAR HEAT-EQUATION
    WEISSLER, FB
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 545 - 551
  • [30] Stability of ODE blow-up for the energy critical semilinear heat equation
    Collot, Charles
    Merle, Frank
    Raphael, Pierre
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 65 - 79