Lyapunov-based Stability Analysis for Conveying Fluid Pipe with Nonlinear Energy Sink

被引:2
|
作者
Duan, Nan [1 ]
Wu, Yuhu
Sun, Xi-Ming
Zhong, Chongquan
Wang, Wei
机构
[1] Dalian Univ Technol, Key Lab Intelligent Control & Optimizat Ind Equip, Minist Educ, Dalian 116024, Peoples R China
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
基金
中国国家自然科学基金;
关键词
Conveying fluid pipe; nonlinear energy sink; Galerkin approximation; stability analysis; energy disturbances technique; MECHANICAL OSCILLATORS; PARAMETRIC RESONANCES; DYNAMICS;
D O I
10.1016/j.ifacol.2020.12.2161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the stability of a conveying fluid pipe with nonlinear energy sink (NES), which is a passive vibration controller. Based on the Galerkin approximation method, the fourth-order partial differential equation (PDE) model of the conveying fluid pipe-NES system is converted into an ordinary differential equation (ODE) form. Then, based on the first order characterization of convexity and energy disturbances technique under the framework of Lyapunov stability theory, global exponential stability of the conveying fluid pipe-NES system is obtained. Copyright (C) 2020 The Authors.
引用
收藏
页码:9157 / 9162
页数:6
相关论文
共 50 条
  • [41] Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid
    Abbasnejad, B.
    Shabani, R.
    Rezazadeh, G.
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (03) : 577 - 584
  • [42] On robustness of Lyapunov-based nonlinear adaptive controllers
    Satoh, Yasuyuki
    Nakamura, Hisakazu
    Ohtsuka, Toshiyuki
    IFAC PAPERSONLINE, 2016, 49 (18): : 229 - 234
  • [43] A graphical understanding of Lyapunov-based nonlinear control
    Curtis, JW
    Berad, RW
    PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 2278 - 2283
  • [44] Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: A full nonlinear analysis
    Paidoussis, M.
    Semler, C.
    Nonlinear Dynamics, 1993, 4 (06) : 655 - 670
  • [45] Lyapunov-based stability region computation approach
    Schroedel, Frank
    Liu, Hong
    Elghandour, Ramy
    Abel, Dirk
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 3009 - 3014
  • [46] Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
    Danilo Montoya, Oscar
    Gil-Gonzalez, Walter
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (01): : 21 - 29
  • [47] Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe
    Semler, C
    Paidoussis, MP
    JOURNAL OF FLUIDS AND STRUCTURES, 1996, 10 (07) : 787 - 825
  • [48] Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid
    Tang, Ye
    Zhen, Yaxin
    Fang, Bo
    APPLIED MATHEMATICAL MODELLING, 2018, 56 : 123 - 136
  • [49] A computationally efficient Lyapunov-based scheduling procedure for control of nonlinear systems with stability guarantees
    McConley, MW
    Appleby, BD
    Dahleh, MA
    Feron, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (01) : 33 - 49
  • [50] Nonlinear dynamic analysis of cantilevered pipe conveying fluid with local rigid segment
    Zhou, K.
    Ni, Q.
    Guo, Z. L.
    Yan, H.
    Dai, H. L.
    Wang, L.
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1571 - 1589