Nonparametric Analysis of Non-Euclidean Data on Shapes and Images

被引:0
|
作者
Bhattacharya, Rabi [1 ]
Oliver, Rachel [1 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita Ave,POB 210089, Tucson, AZ 85721 USA
关键词
Frechet means; uniqueness and asymptotic distribution; nonparametric Bayes on manifolds; density estimation; machine vision; EXTRINSIC SAMPLE MEANS; DIFFUSION TENSOR MRI; CENTER-OF-MASS; DIRICHLET MIXTURES; DENSITY-ESTIMATION; LIMIT-THEOREMS; FRECHET MEANS; MANIFOLDS; DISTRIBUTIONS; STATISTICS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents some of the basic theory for nonparametric inference on non-Euclidean spaces using Frechet means that has been developed during the past two decades. Included are recent results on the asymptotic distribution theory of sample Frechet means on such spaces, especially differentiable and Riemannian manifolds. Apart from this main theme and its applications, a nonparametric Bayes theory on Riemannian manifolds is outlined for the purpose of density estimation and classification. A final section briefly discusses the problem of machine vision, or robotic recognition of images as Riemannian manifolds.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [41] Non-Euclidean Ideal Spectrometry
    Sa Earp, Henrique N.
    Sicca, Vladmir
    Kyotoku, Bernardo B. C.
    BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (06) : 683 - 688
  • [42] Non-Euclidean principal component analysis by Hebbian learning
    Lange, Mandy
    Biehl, Michael
    Villmann, Thomas
    NEUROCOMPUTING, 2015, 147 : 107 - 119
  • [43] Adapted Active Contours for Catadioptric Images using a Non-euclidean Metrics
    Mirhisse, Jamal
    Nasri, M'Barek
    EL Allaoui, Ahmad
    Kachi, Djemaa
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,
  • [44] FRACTAL IMAGES - A YOUNG MAN INTRIGUED BY THE FLIGHT OF A NON-EUCLIDEAN FLY
    GINZBURG, C
    LEONARDO, 1986, 19 (04) : 289 - 291
  • [45] Representation of images by surfaces and higher dimensional manifolds in non-Euclidean space
    Sochen, N
    Zeevi, YY
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 469 - 476
  • [46] A Family of Non-Euclidean PIDs
    Bevelacqua, Anthony J.
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (09): : 936 - 939
  • [47] ON NON-EUCLIDEAN HARMONIC MEASURE
    PINSKY, MA
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1985, 21 (01): : 39 - 46
  • [48] Non-Euclidean Dubins' problem
    Monroy-Pérez F.
    Journal of Dynamical and Control Systems, 1998, 4 (2) : 249 - 272
  • [49] Statistical shape analysis using non-Euclidean metrics
    Larsen, R
    Hilger, KB
    MEDICAL IMAGE ANALYSIS, 2003, 7 (04) : 417 - 423
  • [50] Non-Euclidean Newtonian cosmology
    Barrow, John D.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (12)