Nonparametric Analysis of Non-Euclidean Data on Shapes and Images

被引:0
|
作者
Bhattacharya, Rabi [1 ]
Oliver, Rachel [1 ]
机构
[1] Univ Arizona, Dept Math, 617 N Santa Rita Ave,POB 210089, Tucson, AZ 85721 USA
关键词
Frechet means; uniqueness and asymptotic distribution; nonparametric Bayes on manifolds; density estimation; machine vision; EXTRINSIC SAMPLE MEANS; DIFFUSION TENSOR MRI; CENTER-OF-MASS; DIRICHLET MIXTURES; DENSITY-ESTIMATION; LIMIT-THEOREMS; FRECHET MEANS; MANIFOLDS; DISTRIBUTIONS; STATISTICS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents some of the basic theory for nonparametric inference on non-Euclidean spaces using Frechet means that has been developed during the past two decades. Included are recent results on the asymptotic distribution theory of sample Frechet means on such spaces, especially differentiable and Riemannian manifolds. Apart from this main theme and its applications, a nonparametric Bayes theory on Riemannian manifolds is outlined for the purpose of density estimation and classification. A final section briefly discusses the problem of machine vision, or robotic recognition of images as Riemannian manifolds.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [1] Nonparametric Analysis of Non-Euclidean Data on Shapes and Images
    Rabi Bhattacharya
    Rachel Oliver
    [J]. Sankhya A, 2019, 81 (1): : 1 - 36
  • [2] Non-Euclidean analysis
    Helgason, S
    [J]. Non-Euclidean Geometries, 2006, 581 : 367 - 384
  • [3] Causal Discovery on Non-Euclidean Data
    Yang, Jing
    Xie, Kai
    An, Ning
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2202 - 2211
  • [4] Differential Geometry for Model Independent Analysis of Images and Other Non-Euclidean Data: Recent Developments
    Bhattacharya, Rabi
    Lin, Lizhen
    [J]. SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - II: BROWNIAN WEB AND PERCOLATION, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 299 : 1 - 43
  • [5] Bootstrapping Descriptors for Non-Euclidean Data
    Eltzner, Benjamin
    Huckemann, Stephan
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 12 - 19
  • [6] Riemann's manifolds and non-euclidean shapes (First Announcement)
    Koebf, P
    [J]. SITZUNGSBERICHTE DER PREUSSICHEN AKADEMIE DER WISSENSCHAFTEN PHYSIKALISCH-MATHEMATISCHE KLASSE, 1927, : 164 - 196
  • [7] The non-Euclidean Euclidean algorithm
    Gilman, Jane
    [J]. ADVANCES IN MATHEMATICS, 2014, 250 : 227 - 241
  • [8] EUCLIDEAN AND NON-EUCLIDEAN ILLUSIONS
    RAINVILLE, RE
    DUSEK, V
    [J]. PERCEPTUAL AND MOTOR SKILLS, 1972, 34 (03) : 916 - +
  • [9] NON-EUCLIDEAN HARMONIC-ANALYSIS
    TERRAS, A
    [J]. SIAM REVIEW, 1982, 24 (02) : 159 - 193
  • [10] On the information and representation of non-Euclidean pairwise data
    Laub, Julian
    Roth, Volker
    Buhmann, Joachim A.
    Mueller, Klaus-Robert
    [J]. PATTERN RECOGNITION, 2006, 39 (10) : 1815 - 1826