Convergence of an explicit iterative scheme

被引:1
|
作者
Laydi, MR [1 ]
机构
[1] Univ Franche Comte, LCS, CNRS, UMR 6623, F-25300 Besancon, France
关键词
D O I
10.1016/S0764-4442(97)89801-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An iterative method which deals with the computation of solutions of variational equations by the finite element method is presented in this paper The computation, in some cases, can be done explicitly for each element. We apply this method for a nodal scheme to solve a diffusion problem and we give convergence results. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:511 / 514
页数:4
相关论文
共 50 条
  • [21] Global convergence domains for an efficient fifth order iterative scheme
    Yadav, Sonia
    Singh, Sukhjit
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (10) : 2176 - 2191
  • [22] CONVERGENCE AND STABILITY OF NEW ITERATIVE SCHEME IN BANACH SPACE AND APPLICATION
    Ali, Javid
    Ali, Faeem
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 49 - 51
  • [23] NOTE ON THE CONVERGENCE OF AN ITERATIVE SCHEME FOR SOLVING A QUADRATIC EQUATION.
    Jamieson, M.J.
    [J]. Computer Journal, 1987, 30 (02): : 189 - 190
  • [24] FAST CONVERGENCE AND ASYMPTOTIC PRESERVING OF THE GENERAL SYNTHETIC ITERATIVE SCHEME
    Su, Wei
    Zhu, Lianhua
    Wu, Lei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : B1517 - B1540
  • [25] Jungck-Khan iterative scheme and higher convergence rate
    Khan, Abdul Rahim
    Gursoy, Faik
    Karakaya, Vatan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (12) : 2092 - 2105
  • [26] Convergence of iterative methods for a fourth-order discretization scheme
    Zhang, J
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (02) : 49 - 55
  • [27] IMPROVED CONVERGENCE OF ITERATIVE SCHEME FOR ANALYZING ARRAYS OF FINITE SIZE
    STYLIANOU, A
    VARDAXOGLOU, JC
    [J]. ELECTRONICS LETTERS, 1990, 26 (10) : 641 - 643
  • [28] Convergence of iterative methods for a fourth-order discretization scheme
    Department of Mathematics, George Washington University, Washington, DC 20052, United States
    [J]. Appl Math Lett, 2 (49-55):
  • [29] Global convergence domains for an efficient fifth order iterative scheme
    Sonia Yadav
    Sukhjit Singh
    [J]. Journal of Mathematical Chemistry, 2023, 61 : 2176 - 2191
  • [30] Euler implicit/explicit iterative scheme for the stationary Navier–Stokes equations
    Yinnian He
    [J]. Numerische Mathematik, 2013, 123 : 67 - 96