Probabilistic morphisms and Bayesian nonparametrics

被引:2
|
作者
Jost, Juergen [1 ]
Van Le, Hong [2 ]
Tran, Tat Dat [1 ,3 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[2] Czech Acad Sci, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[3] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2021年 / 136卷 / 04期
关键词
D O I
10.1140/epjp/s13360-021-01427-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we develop a functorial language of probabilistic morphisms and apply it to some basic problems in Bayesian nonparametrics. First we extend and unify the Kleisli category of probabilistic morphisms proposed by Lawvere and Giry with the category of statistical models proposed by Chentsov and Morse-Sacksteder. Then we introduce the notion of a Bayesian statistical model that formalizes the notion of a parameter space with a given prior distribution in Bayesian statistics. We revisit the existence of a posterior distribution, using probabilistic morphisms. In particular, we give an explicit formula for posterior distributions of the Bayesian statistical model, assuming that the underlying parameter space is a Souslin space and the sample space is a subset in a complete connected finite dimensional Riemannian manifold. Then we give a new proof of the existence of Dirichlet measures over any measurable space using a functorial property of the Dirichlet map constructed by Sethuraman.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Probabilistic morphisms and Bayesian nonparametrics
    Jürgen Jost
    Hông Vân Lê
    Tat Dat Tran
    [J]. The European Physical Journal Plus, 136
  • [2] Robustness in Bayesian nonparametrics
    Bose, Sudip
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 82 : 161 - 169
  • [3] Bayesian nonparametrics for directional statistics
    Binette, Olivier
    Guillotte, Simon
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 216 : 118 - 134
  • [4] Special issue on Bayesian nonparametrics
    Ghoshal, Subhashis
    Kleijn, Bas
    van der Vaart, Aad
    van Zanten, Harry
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2015, 166 : 1 - 1
  • [5] QUANTILE PYRAMIDS FOR BAYESIAN NONPARAMETRICS
    Hjort, Nils Lid
    Walker, Stephen G.
    [J]. ANNALS OF STATISTICS, 2009, 37 (01): : 105 - 131
  • [6] Bayesian nonparametrics for single molecule
    Presse, Steve
    [J]. BIOPHYSICAL JOURNAL, 2022, 121 (03) : 533A - 534A
  • [7] Bayesian Nonparametrics for Fluorescence Methods
    Tavakoli, Meysam
    Jazani, Sina
    Sgouralis, Ioannis
    Presse, Steve
    [J]. BIOPHYSICAL JOURNAL, 2019, 116 (03) : 39A - 39A
  • [8] Bayesian Nonparametrics for Stochastic Epidemic Models
    Kypraios, Theodore
    O'Neill, Philip D.
    [J]. STATISTICAL SCIENCE, 2018, 33 (01) : 44 - 56
  • [9] Predictive construction of priors in Bayesian nonparametrics
    Fortini, Sandra
    Petrone, Sonia
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (04) : 423 - 449
  • [10] Bayesian Nonparametrics for Offline Skill Discovery
    Villecroze, Valentin
    Braviner, Harry J.
    Naderian, Panteha
    Maddison, Chris J.
    Loaiza-Ganem, Gabriel
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,