Local Heating Control of Plasmonic Nanoparticles for Different Incident Lights and Nanoparticles

被引:16
|
作者
Chen, Meijie [1 ,2 ]
He, Yurong [1 ,2 ]
Hu, Yanwei [1 ,2 ]
Zhu, Jiaqi [3 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Heilongjiang Key Lab New Energy Storage Mat & Pro, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol, Ctr Composite Mat, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasmonic; Au nanoparticle; Photothermal; Finite element method; SOLAR ABSORPTION; GENERATION;
D O I
10.1007/s11468-019-00990-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper investigates the nanoscale control of heating processes in the Au nanostructures from the aspects of light sources, nanoparticle morphologies, multi-layer Au shells, and nanoparticle dimers. The spatiotemporal evolution of the temperature profile inside and around the Au nanoparticles is computed using a numerical framework based on the finite element method. One-temperature model and two-temperature model are used for the calculation of continuous-wave and picosecond pulse laser, respectively. Results show that the maximum temperature increase is linear with the laser energy density, the slopes of which are various for continuous-wave laser and picosecond pulse laser. For the Au cube, ellipsoid, ring, and sphere with the same volume, the maximum resonance wavelengths locate in 580 nm, 610 nm, 500 nm, and 530 nm, respectively. The trend of the maximum temperature increase agrees well with the absorption cross section. With increasing the number of the shell, a red shift occurs from 665 to 690 nm and the total absorption cross section also increases. What needs to be emphasized is that it does not need to heat the surrounding environment while the core region remains a very high temperature, which is very interesting and suitable for photothermal applications such as photothermal catalysis and nanoreaction oven. For the nanoshell dimers, it can be heated selectively by adjusting the incident angle and light wavelength for this dimer system.
引用
收藏
页码:1893 / 1902
页数:10
相关论文
共 50 条
  • [41] Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3 nanoparticles
    Huilin You
    Siqi Li
    Yulong Fan
    Xuyun Guo
    Zezhou Lin
    Ran Ding
    Xin Cheng
    Hao Zhang
    Tsz Woon Benedict Lo
    Jianhua Hao
    Ye Zhu
    Hwa-Yaw Tam
    Dangyuan Lei
    Chi-Hang Lam
    Haitao Huang
    [J]. Nature Communications, 13
  • [42] Using plasmonic heating of gold nanoparticles to generate local SER(R)S-active TiO2 spots
    Alessandri, Ivano
    Depero, Laura E.
    [J]. CHEMICAL COMMUNICATIONS, 2009, (17) : 2359 - 2361
  • [43] Control of the input efficiency of photons into solar cells with plasmonic nanoparticles
    Pors, Anders
    Uskov, Alexander V.
    Willatzen, Morten
    Protsenko, Igor E.
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (08) : 2226 - 2229
  • [44] Local Control of Ultrafast Dynamics of Magnetic Nanoparticles
    Sukhov, A.
    Berakdar, J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (05)
  • [45] Investigation of thermal parameters of AlN nanoparticles at the different heating rates
    Huseynov, Elchin M.
    Naghiyev, Tural G.
    [J]. VACUUM, 2023, 212
  • [46] Magnetic heating effect of nanoparticles with different sizes and size distributions
    Mueller, R.
    Dutz, S.
    Neeb, A.
    Cato, A. C. B.
    Zeisberger, M.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 328 : 80 - 85
  • [47] Effect of different molecular coatings on the heating properties of maghemite nanoparticles
    Angotzi, Marco Sanna
    Mameli, Valentina
    Khanal, Shankar
    Veverka, Miroslav
    Vejpravova, Jana
    Cannas, Carla
    [J]. NANOSCALE ADVANCES, 2022, 4 (02): : 408 - 420
  • [48] Comparative Analysis of Optical Spectra of Plasmonic Nanoparticles of Different Geometrical Shapes
    A. V. Mekshun
    S. S. Moritaka
    A. D. Kondorskii
    V. S. Lebedev
    [J]. Bulletin of the Lebedev Physics Institute, 2020, 47 : 276 - 279
  • [49] Plasmonic and interband excitations of Au nanoparticles lead to different relaxation pathways
    Ferrera, M.
    [J]. NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2021, 44 (01):
  • [50] Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating
    Mahmoud, Mahmoud A.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (47) : 32016 - 32023