Exploring Category-Shared and Category-Specific Features for Fine-Grained Image Classification

被引:0
|
作者
Wang, Haoyu [1 ]
Chang, DongLiang [1 ]
Liu, Weidong [3 ]
Xiao, Bo [1 ]
Ma, Zhanyu [1 ,2 ]
Guo, Jun [1 ]
Chang, Yaning [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing 100876, Peoples R China
[2] Beijing Acad Artificial Intelligence, Beijing 100876, Peoples R China
[3] China Mobile Res Inst, Beijing 100876, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
Fine-grained image classification; Semantic intra-class similarity; Channel-wise attention; Spatial-wise attention;
D O I
10.1007/978-3-030-88004-0_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The attention mechanism is one of the most vital branches to solve fine-grained image classification (FGIC) tasks, while most existing attention-based methods only focus on inter-class variance and barely model the intra-class similarity. They perform the classification tasks by enhancing inter-class variance, which narrows down the intra-class similarity indirectly. In this paper, we intend to utilize the intra-class similarity as assistance to improve the classification performance of the obtained attention feature maps. To obtain and utilize the intra-class information, a novel attention mechanism, named category-shared and category-specific feature extraction module (CSS-FEM) is proposed in this paper. CSS-FEM firstly extracts the category-shared features based on the intra-class semantic relationship, then focuses on the discriminative parts. CSS-FEM is assembled by two parts: 1) The category-shared feature extraction module extracts category-shared features that contain high intra-class semantic similarity, to reduce the large intra-class variances. 2) The category-specific feature extraction module performs spatial-attention mechanism in category-shared features to find the discriminative information as category-specific features to decrease the high inter-class similarity. Compared with the state-of-the-art methods, the experimental results on three commonly used FGIC datasets show that the effectiveness and competitiveness of the proposed CSS-FEM. Ablation experiments and visualizations are also provided for further demonstrations.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [41] Category-specific features and valence in action-effect prediction: An EEG study
    Vincent, Romain
    Hsu, Yi-Fang
    Waszak, Florian
    BIOLOGICAL PSYCHOLOGY, 2017, 123 : 220 - 225
  • [42] Category-Specific Prototype Self-Refinement Contrastive Learning for Few-Shot Hyperspectral Image Classification
    Liu, Quanyong
    Peng, Jiangtao
    Chen, Na
    Sun, Weiwei
    Ning, Yujie
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] CSPN: A Category-Specific Processing Network for Low-Light Image Enhancement
    Wu, Hongjun
    Wang, Chenxi
    Tu, Luwei
    Patsch, Constantin
    Jin, Zhi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11929 - 11941
  • [44] Learning Cascade Attention for fine-grained image classification
    Zhu, Youxiang
    Li, Ruochen
    Yang, Yin
    Ye, Ning
    NEURAL NETWORKS, 2020, 122 : 174 - 182
  • [45] Feature relocation network for fine-grained image classification
    Zhao, Peng
    Li, Yi
    Tang, Baowei
    Liu, Huiting
    Yao, Sheng
    NEURAL NETWORKS, 2023, 161 : 306 - 317
  • [46] Fine-grained Image Classification Combined with Label Description
    Shi, Xiruo
    Xu, Liutong
    Wang, Pengfei
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1057 - 1064
  • [47] DEEP DICTIONARY LEARNING FOR FINE-GRAINED IMAGE CLASSIFICATION
    Srinivas, M.
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 835 - 839
  • [48] Separated smooth sampling for fine-grained image classification
    Rong, Shenghai
    Wang, Zilei
    Wang, Jie
    NEUROCOMPUTING, 2021, 461 : 350 - 359
  • [49] Efficient Image Embedding for Fine-Grained Visual Classification
    Payatsuporn, Soranan
    Kijsirikul, Boonserm
    2022-14TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SMART TECHNOLOGY (KST 2022), 2022, : 40 - 45
  • [50] Evaluation of Output Embeddings for Fine-Grained Image Classification
    Akata, Zeynep
    Reed, Scott
    Walter, Daniel
    Lee, Honglak
    Schiele, Bernt
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2927 - 2936