LOWER BOUND ON THE NUMBER OF HAMILTONIAN CYCLES OF GENERALIZED PETERSEN GRAPHS

被引:1
|
作者
Lu, Weihua [1 ]
Yang, Chao [2 ]
Ren, Han [3 ,4 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[3] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[4] Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
关键词
generalized Petersen graph; Hamiltonian cycle; partition number; 1-factor;
D O I
10.7151/dmgt.2141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the number of Hamiltonian cycles of a generalized Petersen graph P(N, k) and prove that psi(P(N, 3) >= N center dot alpha(N) where psi(P(N, 3)) is the number of Hamiltonian cycles of P(N, 3) and alpha(N) satisfies that for any epsilon > 0, there exists a positive integer M such that when N > M, ((1-epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2) < alpha N < ((1+epsilon)(1-r(3))/6r(3)+5r(2)+3)(1/r)(N+2), where 1/r = max {vertical bar 1/r (j)vertical bar j = 1, 2,..., 6} and each r(j) is a root of equation x(6) + x(5) + x(3) - 1 = 0, r approximate to 0.782. This shows that psi(P(N, 3) is exponential in N and also deduces that the number of 1-factors of P(N, 3) is exponential in N.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 50 条
  • [31] 2-Domination number of generalized Petersen graphs
    Bakhshesh, Davood
    Farshi, Mohammad
    Hooshmandasl, Mohammad Reza
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [32] 2-Domination number of generalized Petersen graphs
    Davood Bakhshesh
    Mohammad Farshi
    Mohammad Reza Hooshmandasl
    Proceedings - Mathematical Sciences, 2018, 128
  • [33] Generalized cospectral graphs with and without Hamiltonian cycles
    Liu, Fenjin
    Wang, Wei
    Yu, Tao
    Lai, Hong-Jian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 585 : 199 - 208
  • [34] On the Minimum Number of Hamiltonian Cycles in Regular Graphs
    Haythorpe, M.
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 426 - 430
  • [35] Anti-Ramsey numbers for cycles in the generalized Petersen graphs
    Liu, Huiqing
    Lu, Mei
    Zhang, Shunzhe
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [36] On the odd girth and the circular chromatic number of generalized Petersen graphs
    Amir Daneshgar
    Meysam Madani
    Journal of Combinatorial Optimization, 2017, 33 : 897 - 923
  • [37] A Lower Bound for the Radio Number of Graphs
    Bantva, Devsi
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2019, 2019, 11394 : 161 - 173
  • [38] On the Domination Number of Generalized Petersen Graphs P(ck, k)
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Wang, Guoqing
    ARS COMBINATORIA, 2015, 118 : 33 - 49
  • [39] Radio Number for Generalized Petersen Graphs P(n,2)
    Zhang F.
    Nazeer S.
    Habib M.
    Zia T.J.
    Ren Z.
    IEEE Access, 2019, 7 : 142000 - 142008
  • [40] The exact 2-domination number of generalized Petersen graphs
    Xue-gang Chen
    Xue-song Zhao
    Proceedings - Mathematical Sciences, 2020, 130