The Risk-Unbiased Cramer-Rao Bound for Non-Bayesian Multivariate Parameter Estimation

被引:3
|
作者
Bar, Shahar [1 ]
Tabrikian, Joseph [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
Cramer-Rao bound; Lehmann unbiasedness; risk-unbiasedness; nuisance parameters; MSE; OF-ARRIVAL ESTIMATION; MAXIMUM-LIKELIHOOD; NUISANCE PARAMETERS; DEPENDENT OBSERVATIONS; PERFORMANCE; PREDICTION; INFORMATION; MATRIX; ERROR;
D O I
10.1109/TSP.2018.2863663
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
How accurately can one estimate a deterministic parameter subject to other unknown deterministic model nuisance parameters? The most popular answer to this question is given by the Cramer-Rao bound (CRB). The main assumption behind the derivation of the CRB is local unbiased estimation of all model parameters. The foundations of this paper rely on doubting this assumption. Generally, in multivariate parameter estimation, each parameter in its turn can be treated as a single parameter of interest, whereas the other model parameters are treated as nuisance, as their misknowledge interferes with the estimation of the parameter of interest. This approach is utilized in this paper to provide a fresh look at deterministic parameter estimation. A new Cramer-Rao (CR) type bound is derived without assuming unbiased estimation of the nuisance parameters. Rather than that, we apply Lehmann's concept of unbiasedness for a risk that measures the distance between the estimator and the locally best unbiased estimator, which assumes perfect knowledge of the nuisance parameters. The proposed risk-unbiased CRB (RUCRB) is proven to be asymptotically attainable by the maximum likelihood estimator while being tighter than the conventional CRB. Furthermore, simulations verify the asymptotic achievability of the RUCRB by the maximum likelihood estimator for an array processing problem.
引用
收藏
页码:4920 / 4934
页数:15
相关论文
共 50 条
  • [41] THE CRAMER-RAO BOUND FOR ESTIMATION-AFTER-SELECTION
    Routtenberg, Tirza
    Tong, Lang
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [42] Cramer-Rao lower bound for harmonic and subharmonic estimation
    Chen, Zhili
    Nowrouzian, Behrouz
    Zarowski, Christopher J.
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 2532 - 2535
  • [43] Analytic and asymptotic analysis of Bayesian Cramer-Rao bound for dynamical phase offset estimation
    Bay, Stephanie
    Herzet, Cedric
    Brossier, Jean-Marc
    Barbot, Jean-Pierre
    Geller, Benoit
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 61 - 70
  • [44] Noisy Feedback Linear Precoding: A Bayesian Cramer-Rao Bound
    Housfater, Alon Shalev
    Lim, Teng Joon
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1689 - 1693
  • [45] Evaluating the Bayesian Cramer-Rao Bound for multiple model filtering
    Svensson, Lennart
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1775 - 1782
  • [46] MODIFIED BAYESIAN CRAMER-RAO LOWER BOUND FOR NONLINEAR TRACKING
    Ozdemir, Onur
    Niu, Ruixin
    Varshney, Pramod K.
    Drozd, Andrew L.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3972 - 3975
  • [47] Circular array design based on Bayesian Cramer-Rao bound
    Behmandpoor, Pourya
    Haddadi, Farzan
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (01) : 317 - 328
  • [48] The Marginal Bayesian Cramer-Rao Bound for Jump Markov Systems
    Fritsche, Carsten
    Gustafsson, Fredrik
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 575 - U10
  • [49] Physics-inspired forms of the Bayesian Cramer-Rao bound
    Tsang, Mankei
    [J]. PHYSICAL REVIEW A, 2020, 102 (06)
  • [50] JOINT ITERATIVE PARAMETER ESTIMATION FROM THE CRAMER-RAO LOWER BOUND FOR AN OFDM SYSTEM
    Mody, Apurva N.
    Raich, Raviv
    Stueber, Gordon L.
    [J]. 2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7, 2008, : 1632 - +