Tunable optofluidic microlens through active pressure control of an air-liquid interface

被引:47
|
作者
Shi, Jinjie [1 ]
Stratton, Zak [1 ]
Lin, Sz-Chin Steven [1 ]
Huang, Hua [1 ]
Huang, Tony Jun [1 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Optofluidic; Tunable lens; Microfluidics; Air-liquid interface; WAVE-GUIDES; MANIPULATION; LENS; CELLS; MICROPARTICLES; CHIP;
D O I
10.1007/s10404-009-0548-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate a tunable in-plane optofluidic microlens with a 9x light intensity enhancement at the focal point. The microlens is formed by a combination of a tunable divergent air-liquid interface and a static polydimethylsiloxane lens, and is fabricated using standard soft lithography procedures. When liquid flows through a straight channel with a side opening (air reservoir) on the sidewall, the sealed air in the side opening bends into the liquid, forming an air-liquid interface. The curvature of this air-liquid interface can be conveniently and predictably controlled by adjusting the flow rate of the liquid stream in the straight channel. This change in the interface curvature generates a tunable divergence in the incident light beam, in turn tuning the overall focal length of the microlens. The tunability and performance of the lens are experimentally examined, and the experimental data match well with the results from a ray-tracing simulation. Our method features simple fabrication, easy operation, continuous and rapid tuning, and a large tunable range, making it an attractive option for use in lab-on-a-chip devices, particularly in microscopic imaging, cell sorting, and optical trapping/manipulating of microparticles.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 50 条
  • [21] Holographic optical tweezers:: Manipulations at an air-liquid interface
    Jesacher, Alexander
    Fuerhapter, Severin
    Maurer, Christian
    Bernet, Stefan
    Ritsch-Marte, Monika
    OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION III, 2006, 6326
  • [22] The impact and deformation of a viscoelastic drop at the air-liquid interface
    Pregent, Stive
    Adams, Sarah
    Butler, Michael F.
    Waigh, Thomas A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2009, 331 (01) : 163 - 173
  • [23] Mechanistic formulation of inorganic membranes at the air-liquid interface
    Zhang, Chen
    Lu, Wanheng
    Xu, Yingfeng
    Zeng, Kaiyang
    Ho, Ghim Wei
    NATURE, 2023, 616 (7956) : 293 - +
  • [24] A Method To Measure Protein Unfolding at an Air-Liquid Interface
    Leiske, Danielle L.
    Shieh, Ian C.
    Tse, Martha Lovato
    LANGMUIR, 2016, 32 (39) : 9930 - 9937
  • [25] Formation of mesostructured thin films at the air-liquid interface
    Edler, Karen J.
    Yang, Bin
    CHEMICAL SOCIETY REVIEWS, 2013, 42 (09) : 3765 - 3776
  • [26] Solutocapillary convection and instability near the air-liquid interface
    Wu, Zuo-Bing
    PHYSICS OF FLUIDS, 2024, 36 (08)
  • [27] DIRECT MEASUREMENT OF PARTICLE CONCENTRATION AT THE AIR-LIQUID INTERFACE
    CARBONELL, R
    RILEY, D
    1989 PROCEEDINGS :: 35TH ANNUAL TECHNICAL MEETING - BUILDING TOMORROWS ENVIRONMENT, 1989, : 426 - 427
  • [28] Photonic Hook Initiated Using an Air-Liquid Interface
    Yue, Liyang
    Yan, Bing
    Wang, Zengbo
    Minin, Oleg V.
    Minin, Igor V.
    PHOTONICS, 2023, 10 (10)
  • [29] PHOTO CONTRACTION OF UNSATURATED MONOLAYERS AT AIR-LIQUID INTERFACE
    GOLIAN, C
    HAWKE, JG
    GREEN, JH
    GEBICKI, JM
    EXPERIENTIA, 1975, 31 (01): : 34 - 35
  • [30] Swimming of a model ciliate near an air-liquid interface
    Wang, S.
    Ardekani, A. M.
    PHYSICAL REVIEW E, 2013, 87 (06):