Optimization of process parameters in feed manufacturing using artificial neural network

被引:21
|
作者
Sudha, L. [1 ]
Dillibabu, R. [2 ]
Srinivas, S. Srivatsa [2 ]
Annamalai, A. [2 ]
机构
[1] Anna Univ, Coll Engn, Dept Management Studies, Madras 600025, Tamil Nadu, India
[2] Anna Univ, Coll Engn, Dept Ind Engn, Madras 600025, Tamil Nadu, India
关键词
Feed manufacturing; Process parameters; Optimization; Artificial neural network; PELLETED ANIMAL FEED; PHYSICAL QUALITY; RICE; PREDICTION;
D O I
10.1016/j.compag.2015.11.004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Feed manufacturing faces enormous challenges and with the demand for good quality feed increasing gradually, it becomes essential to improve the processes in a feed mill. This article provides a brief overview of the different processes in feed manufacturing and identifies the critical, process parameters. Five critical parameters are identified where the production rate is the output parameter. Mash feed size, steam temperature, conditioning time and feed rate are the input parameters. Artificial neural network is the methodology which is used to optimize the process parameters. Root mean squared error and coefficient of determination and computation time are used as performance measures and it is observed that Polak-Ribiere conjugate gradient backpropagation training function with log sigmoid-pure linear transfer function combination provided good results among the different available alternatives. The process parameters are then optimized using the appropriate ideal settings of neural network parameters. This model is extremely useful for the prediction of production rate for 1 specific recipe in a feed mill. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] HYBRIDIZATION OF ARTIFICIAL NEURAL NETWORK USING DESIRABILITY FUNCTIONS FOR PROCESS OPTIMIZATION
    Das, Prasun
    INTERNATIONAL JOURNAL FOR QUALITY RESEARCH, 2010, 4 (01) : 37 - 50
  • [22] A NEURAL NETWORK TO PREDICT PARTICLEBOARD MANUFACTURING PROCESS PARAMETERS
    COOK, DF
    MASSEY, JG
    SHANNON, RE
    FOREST SCIENCE, 1991, 37 (05) : 1463 - 1478
  • [23] Optimization of injection molding process parameters by a hybrid of artificial neural network and artificial bee colony algorithm
    Alvarado Iniesta, Alejandro
    Garcia Alcaraz, Jorge L.
    Rodriguez Borbon, Manuel Ivan
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2013, (67): : 43 - 51
  • [24] A PROCESS PARAMETERS DETERMINATION MODEL BY INTEGRATING ARTIFICIAL NEURAL NETWORK AND ANT COLONY OPTIMIZATION
    Su, Chwen-Tzeng
    Wong, Jui-Tsung
    Tsou, Shang-Chun
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2005, 22 (04) : 346 - 354
  • [25] Optimization of process parameters for improved chitinase activity fromThermomycessp. by using artificial neural network and genetic algorithm
    Suryawanshi, Nisha
    Sahu, Jyoti
    Moda, Yash
    Eswari, J. Satya
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2020, 50 (10): : 1031 - 1041
  • [26] Optimization of FDM process parameters for dual extruder 3d printer using Artificial Neural network
    Giri, Jayant
    Shahane, Pranay
    Jachak, Shrikant
    Chadge, Rajkumar
    Giri, Pallavi
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 3242 - 3249
  • [27] Optimization of underwater wet welding process parameters using neural network
    Omajene J.E.
    Martikainen J.
    Wu H.
    Kah P.
    International Journal of Mechanical and Materials Engineering, 2014, 9 (1)
  • [28] Optimization of wood machining parameters using artificial neural network in CNC router
    Cakmak, Ali
    Malkocoglu, Abdulkadir
    Ozsahin, Sukru
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (14) : 1728 - 1744
  • [29] Prediction of Process Parameters of Friction Stir Welding Using Artificial Neural Network
    Vijaygir, Gosavi Swapnil
    Dinkar, Jaybhaye Maheshwar
    JOURNAL OF POLYMER & COMPOSITES, 2023, 11 (03) : 13 - 25
  • [30] Prediction Of Electric Discharge Machining Process Parameters Using Artificial Neural Network
    Velpula, Sampath
    Eswaraiah, K.
    Chandramouli, S.
    MATERIALS TODAY-PROCEEDINGS, 2019, 18 : 2909 - 2916